	I	VARAY		GINEERI	NG COLI	LEGE: NE	LLORE	
20MA1001		Algeb	ra &Cal	culus (cs	E, ECE, EEE	, CE, ME)		R2020
Semester	He	ours / We	ek	Total	Credit		Max N	Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
Ι	3	1	0	69	4	40	60	100
Pre-requisi		nediate N	/lathema	tics				
Course Obj								
1.					heory of n		nd quadrat	ic forms
2.	•			•	ential equa			
3.	-		earners ir	the conc	epts of hig	sher order	differentia	al equation an its
	application							
4.	•		•	-	mean valu	e theorem	s and the c	oncepts of
_			rential cal					
			•		ve the par		•	
6.	•				atical tools	s needed i	n evaluatir	ng multiple
	-		pplication		<u> </u>			
Course Out	comes: At	ter succe	esstul com	pletion o	f the cours	se, the stu	dent will	Blooms
be able to			<u> </u>					taxonomy Level
CO 1				Equation				(BTL-3)
CO 2				•	ations util	-		(BTL-3)
		es for se	oarable, e	exact, linea	ar, homoge	eneous, or	Bernoulli	
	cases.							
CO 3			plete so	lution of	a higher	order di	fferential	(BTL-2)
	equation							
CO 4					claurin's S	eries and	Maxima,	(BTL-3)
	Minima	for the giv	en functio	on				
CO 5	Apply a	range of	techniq	ues for so	olutions of	f first orde	er Linear	(BTL-3)
	and non	linear Pa	artial Diff	erential E	quations	(PDE)		
CO 6					integrals f		ea of the	(BTL-3)
	region be	ounded by	curves an	nd volume	e			

CO-PO Mapping														
CO						Р	0						PS	60
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	3	3	1											
CO3 3 3 1 <														
CO4 3 2														
CO5	3	3	1											
CO6	3	2												
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					
					C	OURS	e con'	FENT						
N	IODUI	.E — 1				Ma	atrices			Ho	ours:	16 (12	L+4T)	
Introduction	Introduction to matrices, Definition of Rank ,Definition of Echelon form , Problems, Solving System of													
Non-Homog	Non-Homogeneous equations- Definition, Conditions for Consistency, Problems, Solving System of													
Homogeneo	us eq	uation	s- Def	inition	, Prob	lems,	Eigen	values	5 & Ei	gen Ve	ectors-	Defin	ition, P	roblems

		NARA	YANA E	NGINEE	RING CO	LLEGE:N	ELLORE		
20CH1003		CHEMI	STRY FOR	MECHANI	CAL ENGIN	EERING		R2020	
Semester	Н	ours / Wee	k	Total	Credit		Max M	arks	
	L	Т	Р	hrs	С	CIE	SEE	TOTA	L
I	3	0	0	48	3	40	60	100	
Pre-requis	ite: Nil								
2.	of chemist are used in To include control to J To acquire	ry involved the industr the importa protect the s	in applica ry/day-to-c ance of wa structures, e of engine	ation of sev day life. ater in indu polymers	eral import strial usage and their co	ant engine , signification , signification	undamental ering mater nce of corro sage batteries, su	ials that	
Course Ou	itcomes: A	fter succes	ssful com	pletion of	the course	. the stude	nt will be a	able to:	BL
CO 1	Select an		suitable w				domestic a		1
CO 2	Apply the	e knowledg	e of electr	ochemistry	v to improv	e the effici	ency of bat	teries	3
CO 3	Illustrate measures		corrosion	situations	and imple	ment suita	ble corrosi	on control	2
CO 4	-	the prepa tting, elasto	-			ications o	of thermop	lastics &	2
CO 5	Explain of	calorific val	lues, octar	ne number,	refining of	petroleum	and cracki	ng of oils	2
	Select lub								

					C	CO-PC) Map	ping						
CO		РО												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1				2	1					1		
CO2	3	2				1						1		
CO3	3	1				1	2					1		
CO4	2	1				1	2					1		
CO5	1	1				1	1					1		
CO6	2	1										1		

COURSE CONTENT

MODULE – 1

WATER TECHNOLOGY

Definition of hard and soft water, Sources of water and classification of impurities, Hardness and its types, Units of hardness, Determination of hardness of water by EDTA method. problems on hardness, Boiler problems – Scale and Sludge formation in boiler, Priming & Foaming,. Internal treatment methods. Water softening processes –Zeolite process, Ion- exchange process. Brackish water treatment- Electrodialysis, Reverse osmosis.

8hrs

]	NARAYAN	NA ENGIN	EERING	COLLEG	E:NELLO	RE	
20ES1001		PROBL	EM SOLV	ING AND	PROGRA	MMING		R20
Semester	H	Iours / Wee	k	Total	Credit		Max Mar	`ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
Ι	3	0	0	48	3	40	60	100
Pre-requis	site: Mathe	ematics Kno	wledge, A	nalytical a	nd Logical s	kills		
Course Ol	ojectives:							
	nderstand v							
	nderstand th					ge.		
	earn how to							
	earn the synt			U	0 0	0		
5. To le	earn structur	ed program	ming appro	oach for pr	oblem solvi	ng.		
Course Ou	itcomes: A	fter succes	sful compl	etion of th	e course, tl	ne student	will be able	e to:
CO 1	Identify me	thods to so	lve a proble	em through	computer p	orogrammiı	ng. (BL - 3)	
CO 2	Understand	the use of	basic eleme	ents of C la	nguage. (B	L - 2)		
CO 3	Understand	the differe	nce and the	usage of v	various cont	rol stateme	nt. (BL - 2)	
CO 4	Apply the r	nodular app	broach for s	olving the	problems. (BL - 3)		
CO 5	Apply the A	Arrays and I	Pointers for	solving pr	oblems. (B	L - 3)		
CO 6	Explain Us	er-Defined	Data Types	s and Files.	(BL - 2)			

					(CO-PC) Map	ping						
		РО												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											1	
CO2	1	2	1										1	
CO3	1	2	1		2								2	2
CO4	2	2	3	2	1							2	3	2
CO5	3	3	2	2								1	2	
CO6	2	2	2	2								1	2	
					1. Lo	w. 2-N	/ledium	1 3- H	ioh					

2-Medium, 5 nign

COURSE CONTENT

MODULE – 1	FUNDAMENTALS OF COMPUTERS AND	8h
	PROGRAMMING	

Fundamentals of computers: History of Computers, Generations of Computer, The Computer System -The Input-Process-Output Concept, Components of Computer System, Operating System - Introduction, Objectives, Functions.

Introduction to Programming, Algorithms and Flowcharts: Programs and Programming, Programming languages, Compiler, Interpreter, Structured Programming Concept, Algorithms, Flowcharts, How to Develop a Program.

Fundamental Algorithms: Exchanging the values of Two Variables, Counting, Summation of a setof numbers, Factorial computation, Generation of the FibonacciSequence, Reversing the digits of an integer.

At the end of the Module 1, students will be able to:

1. Illustrate the working of a Computer. (BL - 2)

2. Solve problems using language independent notations. (BL - 3)

	ľ	NAF	RAYA	NA EN	GIN	EERIN	G COLLEG	E :: NELLO	RE	
20EN1001						ENGL	SH			R2020
Compation		Н	ours /	Week		Total	Credit		Max N	Aarks
Semester	L		Т	Р		hrs	С	CIE	SEE	TOTAL
Ι	2		0	0		32	2	40	60	100
Pre-re	equisite: l	Kno	wledge	e of fur	ndam	nentals o	f English La	nguage & G	rammar	
Module	Modul	e 1	Mod	lule 1	Mo	odule 1	Module 1	Module 1	Module	1 Total
No. of Hours	05		0	5		06	05	05	06	32
 To acquain review writ To aid the s Course Outcomes CO 1 	t the studing and for students a : After su Acquire gramma	dent orm cqu cces in d tical	ts with al corr ire app ssful co lepth k l accur	n effec respond oropria omplet nowled acy and	tive lence te and ion o lge or l voca	strategie e such as d adequa of the co n formul abulary l	urse, the stud ating appropr puilding. (B.I	aphs, note n g, e mail, an ge on writing lent will be a iate sentence (2:2)	naking, tex d memos. Technical able to: s with	t editing
CO 2	Understa						use of grami	mar and learr	to use	
CO 3	·			•	-		onal written co opport & deta		n using dev	ices of
CO 4	Provide Note ma						clauses and i	improve effe	ctive writin	g
CO 5		es to	-	-		-	ynthesis of se views and edi		-	ng
CO 6		kno	wledge				ng and use str l format of teo		eading effe	ctively and

	NARAYANA ENGINEERING COLLEGE:NELLORE												
20CH1503		CHEMIST	RY FOR ME	CHANICA	L ENGINE	RING LAB	6	R2020					
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ŕks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
I	0	0	3	48	1.5	40	60	100					
Pre-requisi	te: Nil												
Course Obj	ectives:												
1.To pro	ovide the	learners	hands-on-	-training	on the pr	actical ap	oplications	s of the					
-				-	n water ti	-	-						
-	ts, using si					,		J,					
2.The c	ourse wil	l also tra	in the le	arner to	observe	good lab	practices	, record					
readings	and grap	hically re	present th	ne results.	, as well a	as analyze	and inter	pret the					
U	e of reaction	•	•			5		1					
minuene		on conditi	ions on th	e results.									
Course O		A fton and	acceful ac	malation	of the act	maa tha a	tudant wil	l ha ahla tau					
				•				l be able to:					
CO 1	•	1 1			mples from		sources						
CO 2	Perform	quantitativ	e analysis	using inst	trumental 1	nethods.							
603	utilize th	e fundam	ental Jah	oratory te	chniques	for analys	ses such	as titrations					

utilize the fundamental laboratory techniques for analyses such as titrations, CO 3 separation/purification/ and Spectroscopy

CO 4	To be able to analyze and gain experimental skill.
------	--

					(CO-PO	Map	oing							
СО		PO PSO													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3											1			
CO2	3											1			
CO3	3											1			
CO4	3											1			
					1: Lo	w, 2-M	ledium	n, 3- Hi	gh						

COURSE CONTENT	СО
Task-1: Determination of Hardness of a water sample	
Objective	
1. Determine the total hardness (total calcium and magnesium ion concentration).	CO1
2. Learn how to titrate with EDTA solution.	01
3. Determine permanent hardness and the temporary hardness	
Task-2 : Estimation of DO	
Objective:	
1.To Determine the level of dissolved oxygen in a sample of water using Winkler's method.	
2. Analyze the effects of various factors on the level of dissolved oxygen in a water sample	CO 1
(e.g., salt content, temperature, degree of mixing, and the presence of reducing	5
compounds).	
Task-3- Determination of chloride content of water	
Objective:	
define precipitation titrations,	CO 1
1. state and explain the principle of precipitation titrations with reference to the determination	

	NA	KAYANA			DLLEGE:N	ELLORE	1	
20ES1503					RAWING			R2020
Semester		Hours /		Total	Credits		Max Mar	
	L	Т	Р	hrs	C	CIE	SEE	TOTAI
Ι	0	1	4	80	3	40	60	100
Pre-Requisite : I	Basic Mathe	matics(Geo	metry)					
Course Objecti								
1. To impart s								
2. To explore					1 · 1			
 To convey a To Construct 						et.		
						ct and com	plete inform	ation of
any object.	KIIIS OF GLAW	ing msu un	inclus and th	ien use to	соптеу сла			
 6. To gain kno 	wledge for	conversion	of isometri	c views in	to orthogra	nhic views		
0. TO gain Kit	wieuge ioi		of isometri		to orthogra	pilie views	•	
Course Outcom	es :At the e	nd of the co	ourse, stude	nt will be a	able to:			
CO1						neering dra	awing.(BL-1))
CO2			•		ethods(BL-	÷	01	,
CO3					ints,lines,pl		lids.(BL-3)	
CO4		•	1 1 0	-	pment of su			
CO5		-	pment of s		-			
CO6			and Perspe					
			COUR	SECONT	ENT			
TASK-1		Introd	uction &	Conic sec	tions			14Hours
ntroduction to F	ngineering					ng and thei	r significanc	
nstruments used,	0 0	0	•	•	e	0	•	
instrumento usea.							• •	
	0		onstruction	s simple	CONSITUCIÓ		action of 1	
limensioning me	thods. Geo	metrical c	onstruction	s: simple	constructio			
imensioning me Iexagon by gener	thods. Geo al method c	metrical c nly.		-			thod only)	-
limensioning me Hexagon by gener Conic Sections: 7	thods. Geo al method o Types of cor	metrical c nly. nics: Ellipse		-			thod only),.	-
limensioning me Hexagon by gener C onic Sections: 7 Epicycloids and H	thods. Geo al method o Types of cor Typocycloid	metrical c nly. nics: Ellipse Involute	e, Parabola	and Hyper	bola (Eccer	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a	thods. Geo al method of Types of cor Typocycloid, and Enlargeo	metrical c nly. nics: Ellipso Involute l scales, Re	e, Parabola epresentativ	and Hyper	bola (Eccer	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas	thods. Geo al method o Types of cor Typocycloid, and Enlargeo k1,studentsy	metrical c nly. hics: Ellipse Involute l scales, Re villbeablete	e, Parabola presentativ o:	and Hyper	bola (Eccer	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar	thods. Geo al method of Types of cor lypocycloid, and Enlarged k1,studentsy d of Geome	metrical c nly. nics: Ellipse Involute scales, Re villbeabletc trical Cons	e, Parabola epresentativ o: tructions.(E	and Hyper re fraction, BL-3).	bola (Eccer	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar	thods. Geo ral method of Types of cor lypocycloid, and Enlargeo k1,studentsv d of Geome d principles	metrical c nly. nics: Ellipso Involute scales, Re villbeableto trical Cons of enginee	e, Parabola epresentativ o: tructions.(E ring scales)	and Hyper e fraction, 3L-3). (BL-3).	bola (Eccer Scales: plai	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar	thods. Geo ral method of Types of cor lypocycloid, and Enlargeo k1,studentsv d of Geome d principles	metrical c nly. nics: Ellipse Involute scales, Re villbeableto trical Cons of enginee cloidal curv	e, Parabola epresentativ o: tructions.(E ring scales)	and Hyper re fraction, BL-3). (BL-3). g general m	bola (Eccer Scales: plai	ntricity me		-
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2	thods. Geo al method of Types of cor lypocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc	metrical c nly. nics: Ellipse Involute scales, Re villbeableto trical Cons of enginee cloidal curv	e, Parabola epresentativ o: tructions.(E ring scales es by using ographic P	and Hyper e fraction, BL-3). (BL-3). g general m rojections	bola (Eccer Scales: plai hethod.(BL-	ntricity me in, diagona 3).	l only.	Cycloid, 13Hours
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P	thods. Geo al method of Types of cor lypocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc	metrical c nly. nics: Ellipse Involute scales, Re villbeableto trical Cons of enginee cloidal curv	e, Parabola epresentativ o: tructions.(E ring scales es by using ographic P	and Hyper e fraction, BL-3). (BL-3). g general m rojections	bola (Eccer Scales: plai hethod.(BL-	ntricity me in, diagona 3).	l only.	Cycloid,
imensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ngle projection.	thods. Geo al method of Types of cor lypocycloid, and Enlarged k1,studentsy d of Geome d principles ical and Cyc rinciple of j	metrical c nly. nics: Ellipse l scales, Re villbeabletc trical Cons of enginee cloidal curv Ortho projection	e, Parabola epresentativ o: tructions.(E ring scales res by using ographic P : Methods o	and Hyper re fraction, BL-3). (BL-3). g general m rojections of projectio	bola (Eccer Scales: plai hethod.(BL- ons, Compar	ntricity me in, diagona 3).	l only.	Cycloid,
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ngle projection. Projections of po	thods. Geo al method of Types of cor (ypocycloid, and Enlarged k1,studentswid of Geome d principles ical and Cyce rinciple of p ints:Project	metrical c nly. nics: Ellipse Involute scales, Re villbeableto trical Cons of enginee cloidal curv Ortho projection	e, Parabola epresentativ tructions.(E ring scales res by using ographic P Methods o ts placed in	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection	bola (Eccer Scales: plai hethod.(BL- ons, Compar quadrants,	ntricity me in, diagona 3). rison betwo	l only.	Cycloid, 13Hours e and third
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ngle projection. Projections of po Projection of stra	thods. Geo al method of Types of cor Typocycloid, and Enlargeo k1,studentsv d of Geome d principles ical and Cyc rinciple of ints:Project ight lines:	metrical c nly. hics: Ellipse l scales, Re villbeableto trical Cons of enginee eloidal curv Ortho projections	e, Parabola epresentativ o: tructions.(E ring scales) es by using ographic P c Methods o ts placed in al concepts	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection	bola (Eccer Scales: plai hethod.(BL- ons, Compar quadrants,	ntricity me in, diagona 3). rison betwo	l only.	Cycloid, 13Hours e and third
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ingle projection. Projections of po Projection of stra eference planes p	thods. Geo al method of Types of cor Typocycloid, and Enlarged k1,studentsv d of Geome d principles ical and Cyc rinciple of p ints:Project ight lines: laced in firs	metrical c nly. nics: Ellipse Involute scales, Re villbeabletc trical Cons of enginee cloidal curv Ortho projections ion of poin Fundament t quadrant	e, Parabola epresentativ o: tructions.(E ring scales res by using ographic P : Methods of ts placed in al concepts only,	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection different of , Line para	bola (Eccer Scales: plai hethod.(BL- ons, Compar quadrants, illel, perpen	ntricity me in, diagona 3). rison betwo dicular and	l only.	Cycloid, <u>13Hours</u> e and third one and two
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ngle projection. Projections of po Projections of pla	thods. Geo al method of Types of cor Typocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc rinciple of ints:Project aight lines: laced in firs anes: Project	metrical c nly. nics: Ellipse l scales, Re villbeableto trical Cons of enginee cloidal curv Ortho projection ion of poin Fundament t quadrant c	e, Parabola epresentativ tructions.(E ring scales es by using ographic P Methods of ts placed in al concepts only, nes (Triang	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection different of , Line para le, Square,	bola (Eccer Scales: plai hethod.(BL- ons, Compar juadrants, illel, perpen Pentagon, (ntricity me in, diagona 3). rison betwo dicular and	l only.	Cycloid, <u>13Hours</u> e and third one and two
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P angle projection. Projections of po Projection of stra reference planes p	thods. Geo al method of Types of cor Typocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc rinciple of ints:Project aight lines: laced in firs anes: Project	metrical c nly. nics: Ellipse l scales, Re villbeableto trical Cons of enginee cloidal curv Ortho projection ion of poin Fundament t quadrant c	e, Parabola epresentativ tructions.(E ring scales es by using ographic P Methods of ts placed in al concepts only, nes (Triang	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection different of , Line para le, Square,	bola (Eccer Scales: plai hethod.(BL- ons, Compar juadrants, illel, perpen Pentagon, (ntricity me in, diagona 3). rison betwo dicular and	l only.	Cycloid, 13Hours e and third one and two
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P angle projection. Projections of po Projection of stra eference planes p Projections of pla nclined to one an	thods. Geo al method of Types of cor Types of cor Typocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc rinciple of ints:Project aight lines: laced in firs anes: Project d two refere	metrical c nly. nics: Ellipso l Involute d scales, Re villbeableto trical Cons of enginee cloidal curv Ortho projection ion of poin Fundament t quadrant t tion of plan nce planes	e, Parabola epresentativ o: tructions.(E ring scales es by using ographic P methods of ts placed in al concepts only, nes (Triang placed in fi	and Hyper e fraction, BL-3). (BL-3). g general m rojections of projection different of , Line para le, Square,	bola (Eccer Scales: plai hethod.(BL- ons, Compar juadrants, illel, perpen Pentagon, (ntricity me in, diagona 3). rison betwo dicular and	l only.	Cycloid, 13Hours e and third one and two
limensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Dbjectives and P ngle projection. Projections of po Projections of po Projections of pla nclined to one an	thods. Geo al method of Types of cor Types of cor Typocycloid, and Enlargeo k1,studentsy d of Geome d principles ical and Cyc rinciple of ints:Project aight lines: laced in firs anes: Project d two refere	metrical c nly. nics: Ellipse Involute I scales, Re villbeableto trical Cons of enginee eloidal curv Ortho projection ion of poin Fundament t quadrant t quadrant tion of plan nce planes	e, Parabola epresentativ o: tructions.(F ring scales es by using ographic P : Methods of ts placed in al concepts only, nes (Triang placed in fi ble to:	and Hyper re fraction, BL-3). (BL-3). g general m rojections of projection different of , Line para le, Square, irst quadran	bola (Eccer Scales: plai hethod.(BL- ons, Compar juadrants, illel, perpen Pentagon, (ntricity me in, diagona 3). rison betwo dicular and	l only.	Cycloid, 13Hours e and third one and two
dimensioning me Hexagon by gener Conic Sections: 7 Epicycloids and H Scales: Reduced a AttheendoftheTas 1. Understar 2. Understar 3. Draw Con TASK-2 Objectives and P angle projection. Projections of po Projections of po Projections of pla nclined to one an At the end of theT 1. Understar	thods. Geo al method of Types of cor Typocycloid, and Enlarged k1,studentsv d of Geome d principles ical and Cyc rinciple of ints:Project ight lines: laced in firs anes: Project d two refere	metrical c nly. nics: Ellipse Involute I scales, Re villbeableto trical Cons of enginee cloidal curv Ortho projection ion of poin Fundament t quadrant tion of plan nce planes	e, Parabola presentativ tructions.(E ring scales es by using ographic P : Methods of ts placed in al concepts only, nes (Triang) placed in fi ble to: tions.(BL-2	and Hyper re fraction, (BL-3). (BL-3). general m rojections of projection different of , Line para le, Square, rst quadran	bola (Eccer Scales: plai eethod.(BL- ons, Compar quadrants, illel, perpen Pentagon, (nt only	ntricity me in, diagona 3). rison betwo dicular and Circle) par	l only.	Cycloid, 13Hours e and third one and two

3. Construct Projection of planes inclined to one and two reference planes.(BL-3).

			NARAYAN	IA ENGINE	ERING CO	LLEGE::NE	LLORE	
20ES1506		P	ROBLEM S	OLVING A	ND PROG	RAMMING	6 LAB	R20
Semester		Hours /	Week	Total	Credit		Ma	x Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
I	0	0	3	48	1.5	40	60	100
	Pre-req	uisite: M	athematic	s Knowled	dge, Analy	rtical & Lo	gical Skills	S
				ırse Objec	tives:			
			ound data					
			,	ation conc				
		0			m for real			
4. To a	ble to wri	te C progi	rams for re	eal world p	oroblems ι	using simp	le and cor	npound
data	itypes							
5. To e	employee	good pro	gramming	style, sta	ndards an	d practice	s during p	orogram
deve	elopment							
Course Ou	utcomes:	After suce	cessful co	mpletion	of the cou	rse, the st	udent wil	l be able to:
CO 1	Translate	algorithn	ns into pro	ograms (In	C languag	e) (BL - 2))	
CO 2	Code and	debug pi	rograms in	C program	n language	e using var	ious const	ructs.(BL-3)
CO 3	Solve the	problems	s and impl	ement alg	orithms in	C. (BL - 3)		
CO 4	Make use	e of differ	ent data ty	pes to hai	ndle the re	al time da	ita (BL - 3)	

					C	O-PO	Мар	ping						
						Р	0						PSO	
	PO	РО	PO	PO	PSO	PSO								
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
					1: Lov	v, 2-M	ediun	п, 3- Н	igh					

COURSE CONTENT	CO
TASK-1 (3H)	
1. Practice DOS and LINUX Commands necessary for execution of C Programs.	CO 1
2. Study of the Editors, Integrated development environments, and Compilers in	
chosen platform.	
3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the	
programming environment.	
TASK-2 (6H)	
1. Practice programs: Finding the sum of three numbers, exchange of two	CO 1
numbers, largest of two numbers, to find the size of data types, Programs on	
precedence and associativity of operators, sample programs on various library	
functions.	
TASK-3 (6H)	
1. Write a C program to calculate the factorial of a given number	CO1
2. Fibonacci sequence is defined as follows: the first and second terms in the	
sequence are 0 & 1. Subsequent terms are found by adding the preceding two terms	
in the sequence. Write a C program to generate the first n terms of the sequence.	
3. Write a program to find the roots of a Quadratic equation.	
TASK-4 (6H)	
1. Write a program to generate the series of prime numbers in the given range.	CO 2
2. Write a program to reverse the digits of a number.	

	Γ	NARAYAI	NA ENGIN	EERING	COLLEGE	E:NELLO	RE	
20EN1501			ENGLISH	I LANGU	AGE LAB			R2020
Semester		Hours /	Week	Total	Credit		Ma	ax Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
Ι	0	0	3	48	1.5	40	60	100
Pre-requis	ite: Basic	English (Frammar					
2. To rhy 3. To crea con 4. To 5. To mea 6. To	I and produ sensitize th thm develop stra ate more of munication demonstrate distinguish anings of ur provide a s	ce phonem e students ategies app effective, n e his/her al main ide nfamiliar w tructured n	to the nuand propriately t less confro pility to writ as from spo vords from c	tions ces of Engl o improve ontational, te error free ecific detai ontext / for partici	ish speech s one's ability more proc written cor ls and mak pants to pre	sounds, wo to listen a luctive pr nmunication the use of the pare and o	ord accent, i and Use list ofessional on contextual	tics be able to intonation and ening skills to and personal clues to infer ffective, high
Course Ou	tcomes: Af	ter success	ful complet	ion of the c	ourse, the s	tudent will	be able to:	
CO 1		-	ech sounds id phonolog				•	wledge of
CO 2	Ũ	-	itch pattern nd intelligib	Ũ	•	-	Ũ	groups and
CO 3		•	to content and predict		Ũ		rally and/or	in writing
CO 4	paragraph	with a top	vic sentence,	support, a	nd concludi	ng sentenc	e	nd can write a
CO 5		ne students FOEFL, GI		the habit o	f reading pa	issages for	competitiv	e exams such
CO 6			acquire the sem to prepa				ve, presenta	tion with

					CC)-PO]	Mapp	ing							
60		РО													
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	1									3		2			
CO2	1									2		3			
CO3	1									3		3			
CO4	1									2		3			
CO5	1									3		3			
CO6	1									3		3			
	I	1	1	1	: Low,	, 2-Me	dium, 1	3- Hig	h	1	1	1			

COURSE CONTENT	
Module - 1	8 hrs
Introduction to Phonetics :	
Introduction to Sounds of Speech - Vowels - Consonants -	CO1
Listening with a focus on pronunciation	
Reading Newspaper – Highlighting Vowels and Consonants	
Module – 2	8 hrs
Syllabification:	
Word Stress, Rules of word stress	
Practice on Intonation and Stress	CO2
Module – 3	8 hrs
Listening Skills :	
Types of Listening Skills	
Active listening and anticipating the speaker	CO3
Listening for Specific & General Details	
Listening Comprehension	
Module – 4	8 hrs
Defining & Describing: Objects, Places and Events	
Video Speech Writing	CO4
Review Writing (Books / Movies / Productsetc.,)	
Module – 5	8 hrs
Reading Comprehension	
Everyday English – Grammar, Vocabulary, LSRW Skills,	
Summarizing and Note making	CO5
Vocabulary Building	
Module – 6	8 hrs
JAM	
Role Play	
Giving and Asking Directions	CO6
Information Transfer	

			AYANA E					-
20PH1003		PHY	SICS FOR	MECHA	NICAL EN	GINEER	ING	R2020
Semester	Н	ours / We	ek	Total	Credit		Max Ma	rks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II	3	0	0	48	3	40	60	100
Pre-requisi	te: Funda	mental cor	ncepts of Phy	ysics				
Course Ob	jectives:							
1. To gain k	nowledge of	on differen	t types of os	cillations a	and ultrason	ics.		
2. To provid	le knowled	ge on the p	henomenon	of heat tra	insfer so as	to understa	nd a wide	variety of
practical	engineerin	g problem	s					
3. To identi	fy the impo	rtance of t	he optical pl	henomenor	n i.e. interfe	rence and c	liffraction	related to
•	eering appl							
			concepts of]					tions
			characteristi		•	•	ıls.	
6. Familiar	ize types of	sensors fo	or various en	gineering	applications			
Course Ou	tcomes: Af	ter success	sful comple	tion of the	course, the	student wil	l be able to):
CO 1	Acquire l	knowledge	on mechan	ical and so	und waves i	n the pers	pective of e	engineering
	applicatio	ns						
CO 2	classify of	different n	nodes of hea	t transfer a	nd explain h	neat conduc	ction in a b	ad
			npound med					
CO 3	Explain	optical pl	nenomenon	i.e. interfer	ence, diffra	ction using	Huygen's	wave
	theory.							
CO 4	Realize i	mportance	e of LASER	ls in Engin	eering and M	Medical ap	plications.	
CO 5		rate the ki	nowledge on	characteri	stics and ap	plications	of modern	engineering
	materials.							
CO 6	Identify t	1	for maniana		11			

CO-PO M CO	PO	5											PSO	
CO	PO PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO PSO 1	PSO 2
CO1	3	2				1						2		
CO2	3	2										2		
CO3	3	2	1									2		
CO4	3	2				1						2		
CO5	3	3	1			1						2		
CO6	3	2	2			2						2		

COURSE CONTENT

MODULE – 1

OSCILLATIONS & ULTRASONICS

hrs)

OSCILLATIONS: Mechanical simple harmonic oscillator (compound pendulum), derivation of an expression for time period; electrical simple harmonic oscillator(L.C CIRCUIT), derivation of an expression for time period; Damped harmonic oscillator-derivation of an expression for angular frequency of damped oscillations, discussion of weak damping, heavy damping, and critical damping conditions; forced

(8

20MA1003	V	ECTOR (,	LEX VAR IS (VC-CV		&	R2020
Compostor		Hours /	Week	Total	Credit		Ma	x Marks
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II	3	0	0	48	3	40	60	100
		Pre-		Intermedi rse Objec	ate Mather	natics		
4. To u	equire the k	he concept	s of Lapla	ce transfor		properties		antial
equa		-	-					
equat 6. To u	tions. nderstand t se Outcom	he concep	ts of Fouri	ier series a completior such as gra	nd Fourier <u>a of the cou</u> dient, curl a	transform	us and itspr	operties.
equat 6. To ut Cours	tions. nderstand t se Outcom Utiliz	he concep es: After s ze different	ts of Fouri uccessful operators	ier series a completior such as gra es by fun	nd Fourier	transform rrse, the stuand diverge	udent will a server find the	operties. able to: the function
equat 6. To ut Cours CO 1	tions. nderstand t se Outcom Utiliz Evalu	he concep es: After s ze different nate area a	ts of Fouri uccessful operators nd volum	ier series a completior such as gra es by fun ons, Cauch	nd Fourier <u>a of the cou</u> dient, curl a BL-3 damental t	transform urse, the stuand diverge heorems	udent will a ence find th	able to: the function
equat 6. To ut Cours CO 1 CO 2	se Outcom Utiliz Evalu Apply	he concep es: After s the different nate area a y the comp	ts of Fouri uccessful operators nd volum olex function	ier series a completior such as gra es by fun ons, Cauch valu ation by us	nd Fourier n of the cou dient, curl a BL-3 damental t BL-5 ny's integra	transform	udent will a ence find th of vector i n to find th	able to: the function integration the integral
equat 6. To ut Cours CO 1 CO 2 CO 3	se Outcom Utiliz Evalu Apply Solv	he concep es: After s the different the area a y the comp we the diffe	ts of Fouri uccessful operators nd volum plex function rential equ	ier series a completior such as gra es by fun ons, Cauch valu ation by us e transform	nd Fourier n of the cou dient, curl a BL-3 damental t BL-5 ny's integra ies BL-3 ing Laplace	transform rese, the strand diverge heorems of al Theorem	udent will a ence find th of vector i n to find th as and its tea	able to: the function integration the integral chniques

					C	CO-PO) Map	ping						
CO						P	0							PSO
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										PSO1	PSO 2
CO2	3	2	2										3	
CO3	3	3	1										3	
CO4	3	3	2										2	
CO5	3	3	2										3	2
CO6	3	3	2										2	2
					1- Lo	w, 2-M	ledium	1, 3- Hi	igh					

		ľ	NARA	YAN	A ENG	GINE	ERIN	G COI	LEG	E:: NF	ELLO	RE			
20551000					MA	FER	IAL S	SCIE	ENCE	E				R2	2020
20ES1008 Semester				H/W			Total		Credit			Max	Marks		
Bemester		L	T		P		hrs		C		CIE	SE			TAL
II		3	0		0		48		3	4		60		100	
Pre-Requ		-	-		-	in Fr	-	ing m	-		-		10 Che		
Course O							.8							iiiisti j	
			re of 1	metals	and ty	pes of	solids								
					rium d	0	ns and	proper	rties of	steel	and iro	on.			
					nt of ste										
					nd struc nd struc										
ourse Ou	-							-		1818.					
CO1					•					vinatio	n of a	oin ciz	vec of t	netals	and
COI					of allo			is and	uetern	iniatio	n or gi	ani 512		netais	anu
CO2					truction			um dia	agrams	and to	o study	about	phase	;	
	diagı	ams. ((BL-2))			_		-				_		
CO3			l prope	erties a	and stru	ucture	s of va	rious f	errous	and n	on-feri	ous m	etals a	nd allo	ys.
CO4	(BL-			41		of has	4 440 0 44		f all ar		2)				
C04 C05					ncepts camic r				a anoy	S.(BL·	-3)				
C05 C06							,	,							
	Lear	n abou	t vario	ous co	mposit										
						CO.	-PO M	lappii	ng						
		DO	DO	DO	DO	DO	DO	D	D	DO	DO	DO	DO	DC	DC
		PO 1	PO 2	PO 2	PO	PO 5	PO	Р 07	P	PO	PO 10	PO	PO 12	PS	PS
		1	2	3	4	5	6	0/	O e	9	10	11	12	0	C
CO	1	1							8					1	2
<u> </u>		$\frac{1}{2}$													
$\frac{co}{co}$															
		2													2
C0 C0		3					1	1						1	3
		1					1	1						1	1
CC	0	1					1							1	1
							-Mediu		-						
					C	OUR	SE CO	JNTE	NT						
	M	ODUL	E – 1			S	tructu	re of I	Metals	1			8 H		
Bonds in	Solids	s – Me	tallic	bond -	· crysta	Illizati	on of 1	metals	, grain	and g	rain bo	oundar	ies, ef	fect of	
grain bour					•				•	Ũ					
Constitut	ion of	Alloy	s:Neo	cessity	of allo	oying,	types	of soli	d solut	ions,					
At the end of								. 1:							
					t variou termina										
		-			of cons		-			-)					
				P				<u>j</u> ~-(/						
M	ODUL	Ъ-2				Equil	ibriun	1 of Di	agran	ıs				8 H	
Exp	erime	ntal m	ethods	of co	nstructi	ion of	equilib	rium c	liagran	ns, Iso	morph	ism al	loy sys	stems,	
	m coo	ling a	nd hea	ting o	f allow	σΙσι			an min	aibility	v agne	eutec	tic sys	tems,	
equilibriu		inng a	nu neu	ung o	n anoy	s, Lev	/er rule	e, corn	ig mis	cionit	y gaps	, cutet	ere byt		
equilibriu congruent		-		-	•				-				-		
-	melti eutect	ng int toid, p	ermed eritect	iate p	hases,	perited	ctic rea	action.	Trans	forma	tions i	n the	solid s	tate –	

NARAYANAENGINEERINGCOLLEGE:NELLORE											
20ES1003	PR	INCIPLE	S OF ELE	CTRICAL	AND ELE	CTRONIC	CS	R2020			
			EN	GINEERI	NG						
Semester	H	Iours /Wee	k	Total	Credit		Max Mar	`ks			
	L	Т	Р	hrs	TOTAL						
II	3	0	0	48	3	40	60	100			
Pre-requisite: Fundamental concepts of Electrical Circuits Analysis and Electro Magnetic Fields.											
Basic Know	Basic Knowledge on Semiconductor materials.										
Course O	ojectives:										
1. Ab	le to unders	tand the pe	rformance	of Electrica	l circuit ele	ments.					
2. To	understand	the Princip	ole of Opera	tion of elec	trical mach	ines.					
3. Ab	le to Explai	n Typical A	AC Power S	Supply sche	me.						
4. To	provide cor	nprehensiv	e idea abou	t working p	orinciple, op	peration and	applicatio	ons of PN			
Die	ode.										
5. To	provide cor	nprehensiv	e idea abou	t working p	orinciple, op	peration and	applicatio	ons of BJT			
 To provide comprehensive idea about working principle, operation and applications of BJT To provide comprehensive idea about working principle, operation and applications of 											

 MOSFET.

 Course Outcomes: After successful completion of the course, the student will be able to:

 CO1
 Understand DC and AC electrical circuit analysis.(BL-2)

CO2	Demonstrate working principles of transformers and electrical machines.(BL-2)
CO3	Understand the generation, Transmission and distribution of Electrical Power.(BL-2)
CO4	Understand the operation, characteristics of PN junction diode. (BL-02)
005	Lindenstend the encodient characteristics of DIT (DL 02)

CO5 Understand the operation, characteristics of BJT. (BL-02)

CO6 Explain the concept of MOSFET and applications of MOSFET.(BL-02)

	CO-POMapping													
						Р	0						PSO	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1										2	3
CO2	1	2	2										2	3
CO3	2	3	2										3	3
CO4	1	2	1									1	1	
CO5	1	2	1									1	1	1
CO6	1		1									1	1	
	1:Low,2-Medium,3-High													

COURSECONTENT

MODULE-1	DC & AC Circuits	08Hours
ofresistanceswithDCexcitat	its (R- L and C) - Kirchhoff law ion.SuperpositionTheorem-Representationo entation-realpower-reactivepower-apparent	ofsinusoidalwaveforms-peak
At the end of theModule1,s	tudents will be able to:	
1. Understand the	Basic Electrical circuit elements.(BL-2)	

2. Able to understand the parallel connection of resistances.(BL-2)

3. Demonstrate on real power, reactive power and apparent power.(BL-2)

MODULE-2DC &AC Machines08HoursPrinciple and operation of DC Generator-EMF equations- principle and operation of DC Motor-PerformanceCharacteristics of DC Motor-Speed control of DC Motor-Principle and operation of Single PhaseTransformer -OC and SC test on transformer-principle and operation of Induction Motor.Characteristics of DC Motor-Performance

NARAYANA ENGINEERING COLLEGE:NELLORE												
20PH1503	EN	GINEERIN	G PHYSICS I	LAB-1(MEC	HANICAL E	NGINEERIN	IG)	R2020				
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	·ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
ii	0	0	2	36	1	40	60	100				
Pre-requisi												
Course Obj												
To provide student to learn about some important experimental techniques in physics with												
knowledge in theoretical aspects so that they can excel in that particular field. To prepare students												
for performing requirement analysis and design of variety of applications.												
To enable the students to understand the concepts of interference and diffraction , their applications												
and role of	optical fibre	e paramete	ers in comm	unication.								
		•	ze the appli	cations of	laser in find	ding the wa	velength,	slit width and				
its role in di												
To make the	e students t	o identify	the importa	ance of se	nsors							
Course Out												
CO 1	learn imp	ortant con	cepts of ph	ysics throu	ıgh involver	nent in the	experimen	ts by applying				
	theoretica	al knowled	ge.									
CO 2			•			tion , their	application	is and role of				
	optical fib	er parame	ters in com	municatio	٦.							
CO 3	recognize diffractior	• •	ations of la	iser in find	ing the wa	velength,	slit width a	and its role in				
CO 4	identify the importance of sensors											
		-										

	CO-PO Mapping													
СО		РО												
	PO	PO												PSO
	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	2	1										2		
CO2	2	1				1						2		
CO3	2	1				1						2		
CO4														
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	СО
Task 1 - Determination of spring constant of springs using Coupled Oscillator	
objective:To study normal modes of oscillation of two coupled pendulums and to measure	CO 1
the normal mode frequencies as well as spring constant.	
Two identical compound pendulums are coupled by means of a spring. Normal mode	
oscillations are excited and their frequencies are measured.	
Task - 2 Determination of the rigidity modulus of the material of a given wire using Torsional	
Pendulum	
objective: To determine the rigidity modulus of the material of a given wire using Torsional	CO 1
Pendulum	
A torsion pendulum consist of a disk-like mass suspended from thin rod. When the mass is	

		NAR	AYANA EN	GINEER	ING COL	LEGE:NI	ELLORE	1				
20ES15	05			NEERING					R2020			
			PART – A									
Semes	ter		Hours / Wee		Total	Credits	Max Ma	arks				
		L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II		0	0	4	64	2	40	60	100			
			sic mathem	atics.								
		jectives:				_						
			workshop p		nd adopt s	afety pract	tices while	e worki	ng with			
			d equipmen									
			elect and us	se various	marking,	measuring	g, holding	g, striki	ng and			
		-	equipment.						_			
			the interna	-	1		0	+	com the			
			a computer									
			dge about th	ne usage of	tools like	Word p	rocessors,	Spread	dsheets,			
		ntations.	NT / 1.	C (1	T	c	D	• •			
			Networking	of compute	ers and use	e Internet	tacility for	r Brows	ing and			
		hing taomas:	After succes	aful comp	lation of t	ha aquraa	atudant r	vill bo	able to:			
									1010 10.			
CO1 Understand the safety aspects in using the tools and equipment.(BL-2)CO2 Apply tools for making models in respective trades of engineering workshop.(BL-3)												
CO2 Apply tools for making models in respective trades of engineering workshop.(BL-3)CO3 Apply basic electrical engineering knowledge to makes house wiring circuits and												
005	check their functionality.(BL-3)											
CO4	CO4 Understand to disassemble and assemble a Personal Computer and prepare the											
	Computer ready to use(BL-2)											
CO5			edge to Inte		vo or more	computer	s for infor	mation	sharing.			
	1.		0			I			(BL-3)			
									· · · · · ·			
		COU	URSE CON	TENT (TF	RADES FO	OR PRAC	CTICE)					
			Т	rade -1 Ca	arpentry	(6 H)						
Familia	rity	with diffe	erent types	of woods	and tools	s used in	wood wo	orking a	and make			
followin	ıg jo	ints from	out of $300x^2$	40x25mms	of wood s	tock.						
a) Half–	-											
b) Mort	ise a	nd Ten or	n joint									
				Trade-2	Fitting (6	H)						
Familia	rity	with differ	rent types of	tools used	in fitting a	and do the	fitting exe	ercises o	out of 80			
	•	n M.S. sto	• 1		U		U					
a) V-fit	: b) I	Dovetail fi	it									
, ,	,											
			Trad	e - 3 Sheet	Metal Wo	ork (6 H)						
Familia	rity	with differ	rent types of	tools used	in sheet n	netal worki	ing, Devel	opment	s of			
	•		job from ou				0.	•				
	-		nical funnel									
<i></i> , rupo												

Trade - 4 Electrical House Wiring (6 H)

Familiarities with different types of basic electrical circuits and make the following electrical connections.

a) Two lamps in series

b) Two way switch

c) Tube light

d) Two lamps in parallel with 3 pin plug and switches

Trade 5 – Welding(8H)

Familiarity with different types of tools used in welding and do the following welding exercises.

1. Single V butt joint 2.Lap joint

Text Book(s):

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited,Mumbai.
- KalpakjianS.and StevenS.Schmid, "Manufacturing Engineering and Technology" 4thEdition, Pearson Education IndiaEdition, 2002.
- 3. P. Kannaiah&K. L. Narayana "Workshop manual" 2ndEd., Scitech publications Pvt.Ltd.,Hyderabad,2008.

Reference Book(s):

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

WebResources:

- 1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf
- 2. <u>http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826</u>

PART-B IT WORKSHOP LAB

Course Objectives:

- 1. To provide technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

Course	Course Outcomes: After successful completion of the course, student will be able to:									
CO 1	Understand functionalities of a computer and operating system.	(BL-2)								
CO 2	Practice Word processors, Presentation and Spreadsheet tool.	(BL-2)								
CO3	Connect computer using wired and wireless connections.	(BL-2)								

	CO-PO Mapping														
		РО													
	PO														
CO	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	1														
CO2	1														
CO3															
	1: Low, 2-Medium, 3- High														

		NA	ARAY	ANA I	ENGI	NEER	ING C	OLLE	CGE: N	NELLO	ORE			
20ES1511	Material Science Lab R2020 Hours / Week Total Credits Max Marks													2020
Semester			Hou	rs / W	eek	Т	otal	Cree	lits		М	lax Ma	rks	
		L	Т		Р		hrs	С		CIE		SEE	TO	TAL
II		0	0		2		32	1		40		60	1	00
Pre-requi	site:To	have	basic k	nowle	dge in	Engine	eering	Chemi	stry.					
Course Ob														
	repare n							forest		41			of all a	
2. To in 3. To p	npart kn erform h	lowlec	ige on i eatmen	metall	ograph rious s	nc tech	iniques	s for su	ldying	the m	Icrostr	uctures	of allo	ys.
	inknow						ostruc	turesof	untrea	tedstee	els.			
Course Out	tcomes:	After	succes	sful c	omplet	ion of	the co	urse, th	e stud	ent wil	l be at	ole to		
CO1	Desci	ribe th	e relati	on bet	ween 1	micros	tructur	e and p	ropert	ties of t	ferrous	alloys	. (BL-2)
CO2	Unde	erstand	l variou	is crys	stal stru	ictures	(BL-1)						
CO3	Study	y therr	nosettii	ng of f	ferrous	and no	onferro	ous allo	ys (BI	L-1)				
CO4	Deter	mine	the stre	ength a	and ma	gnetic	defect	s of ma	terials	. (BL-	3)			
					(CO-PO	ЭМар	ping						
СО	PO													PSO
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSC
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2	2	1	1								1		
CO3	2		1	1								1		
CO4	2		2	1								1		
								n,3-Hig	,h					
					CO	URSE	CON	ГЕМТ						
Task-1														
Study of gene	eral proc	cedure	for sp	ecime	n prepa	ration	and M	etallur	gical N	Aicroso	cope.			
Fask -2														
Preparation a	nd study	v of th	e Micr	o Stru	cture o	f nure	metals	like Ir	on Cu	and A	1			
<u>^</u>	na staa	y or un		obitu		i puie	metuis	пке п	on, cu	and T				
Fask -3	. 1 1		- M:	1		NC1.1 .								
Preparation a	na stua <u>y</u>	y of th	e Micr	ostruc	ture of	Milla s	steels.							
Fask -4														
Preparation a	nd study	y of th	e Micr	ostruc	ture of	low ca	arbon s	teel.						
Fask -5														
Preparation a	nd study	v of th	e Micr	ostruc	ture of	high c	arbon	steels.						
TASK-6						U								
Study of mic	rostructi	ures of	f Cast I	ron.										
FASK-7														
Study of mice	ostructi	ures of	f Nonfe	errous	alloys.									
FASK-8														
Study of mich	rostructi	ures of	f Heat-	treated	l steels	•								
FASK-9														
IASN-9														

	NARAYANA ENGINEERING COLLEGE:NELLORE												
20ES1508	l	Principles (Of Electrica	l And Elect	ronics Engii	neering Lal	þ	R2020					
Semester	Н	lours / Wee	ek	Total	Credit		Max Mar	rks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
Ι	0	0	3	48	1.5	40	60	100					
Pre-requisite: Network Analysis													
Course Ob	jectives:												
1. To	design elect	trical circui	its										
2. To a	analyze a g	iven netwo	rk by using	mesh & N	odal analysi	is							
3. To 1	measure thr	ee phase A	ctive and R	leactive po	wer.								
4. To 1	understand	the locus d	iagrams.	-									
5. To	Conduct Ex	periment of	on semicono	luctor devi	ces.								
6. To 7	verify ampl	ification of	Transistor	, FET & M	OSFET.								
Course Ou	tcomes: Af	ter success	sful comple	etion of the	e course, the	e student v	will be able	e to:					
CO 1	Verify el	ectrical cire	cuits. (BL-2	2)									
CO 2	Experime	ntally deter	rmine self-i	nductance.	mutual ind	luctance an	d coefficie	nt of coupling					
	Practically	•		,				1 0					
CO 3	Describe	construct	ion, work	ing and	characteris	tics of d	iodes, trai	nsistors and					
			ers (BL-03	-			,						
CO 4	<u>.</u>	*		,	used for a	applications	s such as	rectification					
CO 4 Demonstrate how electronic devices are used for applications such as rectification, switching and amplification (BL-01)													
	Switching	and ampin	ication (DI	. 01)									

					C	CO-PC) Map	ping						
CO						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2	2		2								2	2
CO2		2	2	3									2	2
CO3		2	2	2									3	2
CO4		1	1	3									3	2
					1: Lo	w, 2-M	ledium	, 3- Hi	igh					

COURSE CONTENT	СО
Task 1 - Verification of Kirchhoff laws.	
Objectives:	CO 1
a) To Verify the KCL	
b) To Verify the KVL	
TASK-2 Determination of Self, Mutual Inductances and Coefficient of Coupling	
Objective:	
To determine the self and mutual inductances and coefficient of coupling for two inductive coils.	
Task-3 verification of RL ,RC& RLC series circuits	
Objectives: To Verify the Resistance, inductance & Capacitance effects in series Ac circuits	CO 1
TASK-4 Locus Diagrams of RL and RC Series Circuits	
Objective: To Plot the current locus diagrams for RL and RC circuits.	CO 2

	Γ	NARAYAI	NA ENGI	NEERING		E:NELLO	RE	
20EN1502		0	RAL COMN	IUNICATIC	ON SKILLS LA	AB		R2020
		Hours /	Week	Total	Credit		Max Ma	rks
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II	0	0	2	32	1	40	60	100
			Р	re-requisit	e:Nil			
dev 2. Unc play 3. Imp 4. Unc 5. To i toe: 6. To e Cou	elopawaren derstand an ysand can h proves spea derstand the mprove the xpress then equip stude rse Outcom To develo	ness of app d learn to o andle a cou king ability e essential e mass com n effectivel nts with kr nes : After s	propriate co distinguish ncern or co r in English k points in pr municatior y nowledge an uccessful co ge, skills, a their abilit	informal sp mplaint, w both in terr reparing ar n and provi nd techniqu ompletion nd judgment ty to work	of the cours nt around h collaborativ	s. formal spe y andunder y andcomp tation tunity to e tively tackl e, the stud uman com ely with ot	ech throug rstanding. prehensibili exercise the e the intervilent will be munication hers.	ity. eir rights viewprocess able to: n that facilitates
CO 2	professior telephone	nal & perso e etiquette.	onal relatio	nships and	understan	d techniqu	es require	ore productive d for excellent
CO 3	De	velop their	public spe	aking abilit	ies to speak	both form	hally and in	formally.
CO 4			•		•			and impact.
CO 5				in gro	up activities	•		e participation
CO 6	Lear				views with c juired for at			

						CO-PO	Марр	oing							
		РО													
CO	PO 1	РО 2	PO 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	1									3		2			
CO2	1									2		3			
CO3	1									3		2			
CO4	1									3		3			
CO5	1									3		2			
CO6	1									2		3			
	1			1	1: Lo	w, 2-N	ledium	n, 3- Hi	gh						

COURSE CONTENT	CO
Module - 1	
Ice - Breaking Activity – Introducing Oneself and Others – Greetings – Taking Leave - Introductio	n CO1
to Communication Skills – Verbal & Non Verbal Communication - Barriers to	
effective communication - Kinesics - Proxemics – Chronemics - Haptics- Paralanguage	
Module - 2	
Situational Dialogues and Role play – Expressions in various Situations - Greetings – Apologies - Requests – Giving directions -Social and Professional etiquettes – TelephoneEtiquettes	CO2
Module - 3	
Just a Minute (JAM) - Asking for Information and Giving Directions–Description (Oral): Pictures, Photographs, Products, and Process	CO3
Module – 4	
Presentation Skills – Oral presentations (individual and group) through Seminars / PPTs - Fluen	co4
& accuracy in speech – Improving self- expression– Tonal variations – Listener oriente	ed
speaking - Developing persuasive speakingskills.	
Module - 5	
Debate : concepts, types, do's and don'ts - intensive practice- Group Discussion and Group Discussion : Dynamics of group discussion,intervention, summarizing,	CO5
modulationofvoice, body language, relevance, fluency and	
organization of ideas and rubrics for evaluation.	
Module - 6	
Interview Skills: Concept and process, pre-interview planning, opening strategies, answering strategies, interview through Tele - Conference & video - conference and Mock Interviews.	CO6

			Ν	NARA	YANA	ENG	INEE	RING	COL	LEGE	: NEI	LORF	C			
					EN	GINE	ERINO	G ME	CHA	NICS					R2	020
Seme	ester		Ηοι	urs / W	'eek		To	otalhrs		Credi	it			Aax larks		
			L	Т		Р				С		CIE	SEI		TOTAL	,
	III		2	1		0		48		3		40	60		100	
Pre-r	equisite	: Dif	ferenti	ation a	nd inte	egratio	n topic	es in m	athen	natics.						
Cour	se Obje	ective	es:													
	•			fundaı	nental	s of me	echani	cs con	cept c	f force a	and its	s types.				
	2.	Го lea	rn the	effect	of fric	tion or	equili	ibrium								
	3.	Γo de	velop l	knowle	edge ir	analy:	zing di	fferent	t type	s of trus	ses.					
		•	-				•		-	center of	•	•		nt of i	nertia.	
	5.	Го lea	rn kin	ematic	s, kine	tics of	partic	le and	rigid	oody, re	lated	princip	les.			
(C O 1	Con	npute t	he resu	ıltant o	of syste	em of f	orces i	n pla	ne and s	pace	acting o	on bodi	es. (B	L-3)	
(C O2									riction f						
0	C O3				• •		ns and	analyz	ze the	interna	l force	es of th	e meml	bers of	f various	3
				l frame	,	,										
	C O4							•	osite a	reas. (B	SL-4)					
(C O 5	Solv	e prob	olems r	elated	to kine										
							0	СО-РС		pping					[200
	CC)		_	-		_		0	T -			1 - 1			PSC
			PO	PO	PO	PO	PO	PO	PO		PO	PO	PO	PO	PSO	PS
		4	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO		2	1	1					-					1	
	CO		2	2	2										1	
	CO CO		2	2	2										2	
			2	22	2										2	
		5	2	2	Z		1.L c	$1 \sim 2 N$	[edim	m,3-Hig	rh				1	<u> </u>
							1.L(Jw,2-1	Iculu	11,3-1112	<u>,11</u>					
						C	OURS	E CO	NTE	NT						
		MO	DUL	E – 1			S	ystem	of Fo	rces		10) H			
Compo	osition a	nd res	solutio	on of fo	orces, p	parallel	logram	ı law, p	orinci	ple of tr	ansmi	ssibilit	y, types	s of fo	rce syst	ems
- concu	arrent a	nd co	ncurre	nt cop	lanar f	forces,	resulta	ant of c	copla	nar forc	e syst	ems co	uple, n	nomer	nt of a f	orce
Varign	on's the	orem	, conce	ept of f	free bo	dy diag	grams,	conce	pt of	equilibr	ium o	f copla	nar for	ce sys	tems.	
	MC	DUI	LE -2					Fricti	on			09	H			
Defini	tion of I	Frictio	on and	its app	olicatio	ons, ang	gle of f	riction	, ang	le of rep	ose, c	oeffici	ent of f	riction	n. Types	of
Friction	n, laws o	of sta	tic fric	tion, D	Descrip	tion ar	nd appl	lication	ı of fi	riction o	n blo	cks on l	horizon	ital an	d incline	ed
planes.																
	M	DDU	LE-3			A	nalysi	s of Tr	usses	5		09	H			
Introd	uction to	o plan	e truss	ses, ana	alysis o	of plan	e truss	es by r	netho	d of Joi	nts, m	ethod of	of secti	ons &	tension	
coeffic	ient me	thod.														

	NARAYANA ENGINEERING COLLEGE:NELLORE											
	THERMODYNAMICS											
Semester		Hours /	Total	Credits		Max Marks	5					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
III	3	0	0	48	3	40	60	100				

Pre-requisite : Engineering physics, Mathematics

Course Objectives:

- 1. To learn the fundamental concepts of thermodynamics and related definitions
- **2.** To understand the concept of law of conservation of energy for a process or cycle andto create awareness of principle of working of various thermodynamic systems to learntheir practical applications.
- 3. To describe the principle of entropy, availability, irreversibility and combustion thermodynamics.
- **4.** To study the behavior of pure substance, ideal and real gases during various thermodynamic processes and to study change in various properties.
- **5.** To Prepare students to apply principle of thermodynamics to solve numerical and designproblems of various thermodynamic processes and systems to provide useful solutions.

	Course Outcomes: At the end of the course, student will be able to:
CO 1	Understand the concepts of system, control volume, thermodynamic properties, thermal equilibrium, work and heat. (BL-2)
CO 2	Apply the laws of thermodynamics for different workstations.(BL-3)
CO 3	Analyze the performance of steam power cycles .(BL-4)
CO 4	Measure the properties of pure substances and gas mixtures.(BL-3)
CO 5	Analyze air standard cycles applied in prime movers. (BL-4)

PO PO 2 3 1 -	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P 0 11	PO 12	PSO 1	PSO 2
1 -	-										
		-	-	-	-	-	-	-	1	2	-
2 1	-	-	-		-	-	-	-	1	2	-
2 1	1	1				-	-	-		1	-
2 -	-	-	-	-	-	2	-	-	-	2	-
2 1	1	1				-	-	-	2	1	2
	2 -	2	2 - - - 2 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

COURSE CONTENT

FUNDAMENTAL CONCEPTS

09 Hours

Fundamental Concepts and Definitions: Microscopic and Macroscopic approaches, Concept of continuum and control volume, Systems of Thermodynamics, State, Property, Process, Homogeneous and Heterogeneous systems, Thermodynamic equilibrium, Quasi – static Process, Zeroth Law of Thermodynamics, Temperature Measurement. **Work And Heat Transfer**: Thermodynamic Definition of Work and Heat, Different forms of Work and Work transfer and Heat and Heat Transfer, Path Function and Point Function.

MODULE -2	FIRST LAW OF THERMODYNAMICS	10 Hours

		MANUFA	CTURING	G PROCES	SES			R2020
Semester	Н	ours / Wee		Total	Credits	Ma	x Marks	
-	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	3	0	0	48	3	40	60	100
Pre-requisit	te:			1				
Knowledge ii	n strength	of material	S					
Knowledge in	n engineer	ing materia	ls					
Basic knowle	0							
Preliminary k		e about vari	ous Mecha	nical Man	ufacturing m	nethods		
Course Objec		1.00		C	1 11			
1. To give an			-	•		-		- ·
	•			•	U 1	Ũ	ing system 3.	•
an understand	ling of we	lding metal	llurgy and	weldability	and to intro	oduce vario	usmetal joini	ng
techniques								
coninques								
-	the work	ing of diffe	rent types of	of GAS we	lding proces	ses and GA	AS welding d	efects
4. To Classify		•	• •		U 1		•	efects cs andpowder
4. To Classify 5. To study th		•	• •		U 1		•	
4. To Classify 5. To study th		•	• •		U 1		•	
4. To Classify 5. To study the metallurgy.	ne concept	s of surface	e treatment	process an	d manufactu	aring metho	ods of cerami	cs andpowder
4. To Classify 5. To study the metallurgy.	ne concept	s of surface	e treatment	process an	d manufactu	aring metho	•	cs andpowder
4. To Classify 5. To study th metallurgy.	ne concept	s of surface	e treatment	process an	d manufactu	aring metho	ods of cerami	cs andpowder
4. To Classify 5. To study th metallurgy.	Dutcomes:	After succ	e treatment	process an	d manufactu	nring metho	ods of cerami	cs andpowder
4. To Classify 5. To study th metallurgy. Course C	Dutcomes:	After succ	e treatment	process an	d manufactu	nring metho	ods of cerami	cs andpowder
4. To Classify 5. To study th metallurgy. Course C	Dutcomes:	After succ duce the ba	e treatment	process an pletion of t s of casting	d manufactu the course, the course, the g, pattern pro	he student	ods of cerami	cs andpowder o: tem
4. To Classify 5. To study th metallurgy. Course (CO 1	Dutcomes: introd [BL- Demo	After succ duce the ba -2]	e treatment essful com sic concept ferent spec	process an pletion of t s of casting ial casting	d manufactu the course, the g, pattern pro- processes ar	he student eparation a	will be able to nd gating sys	cs andpowder o: tem
4. To Classify 5. To study th metallurgy. Course C CO 1 CO 2	Dutcomes: introd [BL- Demo Class	After succ duce the ba -2] onstrate dif	e treatment essful com sic concept ferent spec g of various	process an pletion of t s of casting ial casting s welding p	d manufactu the course, the g, pattern pro- processes ar processes, we	he student eparation a nd melting	will be able to nd gating sys	cs andpowder o: tem 2]

СО				PO									Р	SO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	P 01 1	PO1 2	PSO1	PSO2
CO1	2	1											1	
CO2	1	1	2										2	
CO3	1	1	2										2	
CO4	1	1	2		1							1	3	
CO5	1	1		1	2							1	1	2
	I	1:Lo	w,2-N	ledium	n,3-Hig	gh					1		1	
						(COUR	SE CC	NTEN	Л				
ODULE –	COURSE CONTENT 1 CASTING PROCESSES								10	h				

Casting Processes: Introduction to casting process, process steps; Sand Casting – Sand Molds - Types of Molding Sands and Testing; pattern: types, materials and allowance; Cores: Types of cores, core prints, principles and design of gating system;

Solidification of casting: Concept, solidification of pure metal and alloy.

MODULE -2 SPECIAL CASTING PROCESSES

	NARAYANA ENGINEERING COLLEGE:NELLORE												
	Fluid Mechanics and Hydraulic Machines R2020												
Semester		Hrs / W	/eek	Total	Credits		Max Mar	:ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
III	3	3 0 0 48 3 40 60 100											

Pre-Requisite: To have basic knowledge in Mechanics, Mathematics and Integral and Differential Calculus.

Course Objectives:

1. To study the Properties of Fluids.

2. To acquire fundamental knowledge in flow through pipes.

3. To learn various concepts in impact of jet on vanes

4. To understand the various types of hydraulic turbines

5. To analyze the flow in Hydraulic Pumps.

Course	e Outcomes: A	After s	uccess	ful co	mpletio	on of t	the cou	urse, tl	ne stud	lent wi	ill be a	able to	:
CO 1	Apply the	-				luid ki	nemati	cs and	fluid	dynam	ics in s	olving	the
CO 2	Become co	problems of fluid flows (BL-3) Become conversant with concepts of flow through pipes, pitot tube, venturi meter, orifice meter, flow nozzle and turbine meter and able to describe them.(BL-1)											
CO 3		Illustrate the concepts of fluid jets on stationary and moving flat, inclined and curved vanes and also hydro power stations (BL-2)											
CO 4		Make use of the various concepts of water turbines for calculating the efficiencies and unit and specific quantities (BL-3)											
CO 5	Demonstra	Demonstrate the knowledge of working principles of centrifugal pumps (BL-2)											
		CO-POMapping											
	CO	CO PO											
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО
		1	2	3	4	5	6	7	8	9	10	11	12
	CO1	3	1	-	-	-	-	-	-	-	1	-	2
	CO2	2	2	1	-	-	1	-	-	-	-	-	1
	CO3	2	2	2	1	-	-	-	-	-	-	-	1
	CO4	1	2	2	2	-	-	-	-	-	-	-	2
	CO5	1	2	2	2	-	-	-	-	-	-	-	2
						1:Lo	w,2-M	edium	,3-Hig	h			
					SE CO								
	MODUI	LE – 1	PR	COPE	RTIES	5 OF I	LUI	DS		1	0 Hrs		

	NARAYA	ANA ENGI	NEERING	G COLLE(GE: NELL	ORE						
		R2020										
Semester	H	Hours / Week Total Credit Max Marks										
	L T P hrs C CIE SEE											
III	0	60	100									

Pre-requisite: To have basic knowledge in Computers and Engineering Drawing.

Course Objectives:

1. To study the basics of CAD software

2. To develop skills to create 2D models.

3. To develop skills to create 3D models.

4. To study the basics of obtaining 2D Multi view drawings from 3D models.

Course Ou	atcomes: After successful completion of the course, the student will be able to:										
CO 1											
CO 2	Use the software package for drafting and modelling and explain representation of curves for real time applications. (BL-2)										
CO 3	Construct 2D models of Engineering Components (BL-3)										
CO 4	construct 3D models of Engineering Components (BL-3)										

		(CO-PO	ЭМар	ping								
СО		РО											
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1													
CO2	2									2			
CO3	3		3		2					2		2	
CO4	3		3		2					2		2	
	1: Low, 2-Medium, 3-High												

COURSE CONTENT

Task -1 Introduction to AutoCAD commands

Study capabilities of software for Drafting and Modeling – Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.

	NARAYANA ENGINEERING COLLEGE::NELLORE											
	Manufacturing process LabR2020											
Semester	H	Hours / Week Total Credit Max Marks										
	L	L T P hrs C CIE SEE										
III	0	0	3	48	1.5	40	60	100				

Pre-requisite:

Knowledge in strength of materials

Knowledge in engineering materials

Course Objectives:

1. To acquire practical knowledge on Metal Casting and Welding,

2. To Study and practice arc and gas welding technologies.

3. To Gain knowledge on the properties, testing and applications of Steel, Cast Iron and Brass

4. To acquire practical knowledge on Press Working and unconventional machining Processes.

5.To Make the students practice on machine tools so that they can identify, manipulate and control various process parameters during machining processes in machine tool shop.

Course O	utcomes: After successful completion of the course, the student will be able to:										
CO 1	CO 1 understand the importance of safety in metal casting technology[BL-2]										
CO 2	Apply Hands on experience on welding machine to perform welding and cutting operations[BL-3]										
CO 3	Demonstrate Press Working operations on jobs[BL-2]										
CO 4	select the proper tools to work on a machine for the type of part required[BL-4]										
CO 5	Fabricate different types of components using various manufacturing techniques. [BL-3										

		(CO-PO) Mar	oping								
СО		РО											
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1
CO1	1	1										1	
CO2	1	1										1	
CO3												1	
CO4	1	1										1]
CO5	1	1										1	4
		1: Lo	w, 2-N	/lediun	n, 3-Hi	gh							

	NARAYANA ENGINEERING COLLEGE:NELLORE												
Fluid Mechanics and Hydraulic Machines Lab R2020													
Semester	Ho	urs / Week		Total	Credits	N	lax Marl	KS					
	L	L T P hrs C CIE SEE											
III	0	0	3	48	1.5	40	60	100					

Pre-requisite: To have basic knowledge in Mechanics, Mathematics and Integral and Differential Calculus.

Course Objectives:

1. To study the frictional losses of fluid flow in pipes of different diameters.

2. To acquire fundamental knowledge of Bernoulli's principle.

3.To analyze the flow in Hydraulic Machines such as Turbines and pumps

Course Outcom	nes : After successful completion of the course, the student will be able to:
CO 1	Familiar with Calibration of discharge measuring devices such as Venturi meter and
	Orifice meter.(BL-3)
CO 2	Familiarize with measuring minor loss (sudden contraction) and major loss (Frictional
	factor) of a given pipe.(BL-3)
CO 3	Apply the Bernoulli's Theorem (BL-3)
CO 4	Gain practical experience in handling various hydraulic machines (BL-3)

COURSE CONTENT

Task 1 – Calibration of Venturi Meter

Calibrate the coefficient of Discharge of a Venturi Meter.

Task -2 Calibration of Orifice Meter

Calibrate the coefficient of Discharge of an Orifice Meter.

TASK-3 External Mouth Piece

Calibrate the coefficient of Discharge of external mouth piece.

TASK-4 Rectangular Notch

Calibrate the coefficient of Discharge of Rectangular Notch.

TASK-5 Minor Losses

Find the loss of head due to sudden contraction.

TASK-6 Major Losses

Find the friction factor of pipes having different diameters and same material.

TASK-7 Verification of Bernoulli's Theorem.

				THER	MAL ENG	INEERIN	NG I	R2020
emester		Hours /	Week	Total	Credits		Max M	arks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100
	 To a contract of the contract of	make stud abustion e discuss ab describe tl examine th	ngines. out the v ne comb e IC eng	various wor ustion mec ines perform	rking syste hanisms in	ms in IC e IC engine arious testir	ngines.	cs of modern internal
Course					se, student			
CO 1					e of IC en			
CO 2	Expla	in about	various	working sy	stems in I	C engines.	(BL-2)	
CO 3		ribe the correments.(H		n processe	es of engin	es and ide	entify the con	mbustionchamber –
CO 4	Evalu	ate the pe	rforman	ce of IC e	ngine.(BL-	4)		
		-			U (

	CO-PO Mapping														
CO		PO												PSO	
	PO	PO	PO	PO	PSO	PSO 2									
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	2	1											1		
CO2	3												2		
CO3	2	1	1										1		
CO4	2	1	1										1		
CO5	2	1		1									1		
	1: Low, 2-Medium, 3- High														

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO IC ENGINES	09 Hours
IC ENGINES: Classification	on, Various parts and their uses, Materials of p	arts, Working
principles of two stroke and	four stroke engines and SI and CI engines, Valve and Pe	ort Timing Diagrams,
Scavenging of IC Engines.		
MODULE -2	VARIOUS SYSTEMS OF IC ENGINES	10 Hours
Electrical, Air cleaners, defects. COOLING SYSTEM (IN of water cooling – Thermos Pressure sealed cooling, An LUBRICATION SYSTEM Oil pumps – Gear pump an IGNITION SYSTEM (IN	 I (IN SI ENGINES) : Line diagram of fuel supply, Fue Fuel filters, Simple Carburettor – its working princip SI ENGINES) : Methods – Air cooling, water cooling syphon system and Pump Circulation system, Radiator a ti freeze solutions. M (IN SI ENGINES) : Dry sump and Wet sump systed d Plunger pump, Oil filters – Bypass system and Full flor N SI ENGINES) : Requirements of ignition system, ronic Ignition, Working principles of all the ignition system 	ole and types, Carburetto and liquid cooling, Types nd Thermostat. ms. Crankcase ventilation ow system. Types – Battery Ignition

MOI	DULE – 1			Iı	ntrodu	ction					10) Hrs	
				CO	URSE	CON	FENT						
Ľ						1:10	w,z-ivi	edium,	,3-Higi	1			
						1.1.5		o di una	2 11:21				
┢	CO5	1	1	1		1							1
┢	CO3	<u> </u>	2	2		1							1
┝	CO2 CO3	1	1	1		1							1
	CO1	2	2	2		1							1
		PO 1	РО 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	РО 9	РО 10	PO 11	PO 12
F	СО		1	1	1	n	Р	0	-				
Г						C	О-РО	Марр	ing				
CO 5		w displace erenttypes		-		-		-				-	
CO 4	cont	ply the kn tact for m	eshing	gears.	(BL-3)	-					-	th of
CO 3		w velocity				U U							.1
	and	machine.	(BL-3)										011
CO 2		ntify and e		ate diff	ferent	mecha	nieme	with be	asic un	derstar	nding	of mot	on
CO 1		ntify differ ns.(BL-3)		bes of 1	mechai	nisms a	and inv	version	s of di	fferent	kinem	atic	
Course	, outcom	c 5. <i>i</i> fitter i			mpier			, un	. stude		50 001		
	^	es: After	0	•							be abl	e to:	
4. 5.		proficienc re knowle								ers.			
4	machine		·	1.		1	. 1	6					
2. 3.		the princ yse a mecl	.		•			• •		ation o	f links	in a	
n	machine		inla of	atori	a ma-	honior	ha and	ito tomo	26				
ourse Ob 1.		stand the	basic p	orincip	les of l	cinema	tics ar	nd the r	elated	termin	ology	of	
re-requis	-	-	•	ıg Ma	-	-		-	nginee				
IV	L 3	T 0	P 0		hrs 48	C 3		CIE 40		SEE 60		<u>Т</u> 100	OTA
Semester		Hours /	1]	Fotal		dits		ſ		Marks		
				13		пп	SOL	MAC				R20	20

Definitions of link or element, kinematic pairs, degrees of freedom, Grubler's criterion (without derivation), kinematic chain, mechanism, structure, mobility of mechanism, inversion, machine, kinematic chains and inversions. Inversions of four bar chain, single slider crank chain and double slider crank chain, Quick return motion mechanisms – drag link mechanism.

MODULE -2	Mechanisms with LowerPairs	9 Hrs	

		NARA	YANA EN	GINEER	ING COLI	LEGE:NE	LLORE						
		MECHANICS OF MATERIALS R2020											
		Hours /	Max	Marks									
Semester	L	Т	Р										
IV	2	1	60	100									

Pre-requisite: Course on Engineering Mechanics.

Course Objectives:

1. To learn the concepts of stress, strain and its relation.

2. To acquire knowledge in bending moment diagrams of beams .

3. To calculate slope and deflection for various types of beams.

4. To Analyze the shear stresses in beams of different cross sections,

5. To determine the deflection in helical springs.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Explain the fundamentals of Stress and Elastic Constants.(BL-2)
CO 2	Illustrate shear force and bending moment diagrams.(BL-2)
CO 3	Explain the methods for calculating the stress in the beams with different sections.(BL-2)
CO 4	Find the shear strength of solid and hallow shafts.(BL-1)
CO 5	Classify different stresses and strains for the thin and thick cylinders (BL-2)

							CO-I	POMa	pping					
	со				-	-		PO	-	_				F
		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1
	CO1	3	2	2			2						2	
	CO2	3	3	2			2				3		2	
	CO3	2	1	2			2				3		2	
	CO4	3	2	2			2				3		2	
	CO5	3	2	2			2				3		2	
						1:	Low,2-	Mediu	ım,3-H	ligh				
				CO	URSE	CON	TENI	1						
MO	DULE – 1		SIN	MPLE	STRE	ESSES	AND	STRA	INS				08	hours
•	teral strain, composite ba								ween	three e	lastic m	nodule,	Bars of	Varying
MOD	ULE -2	8	SHEA]	R FOF	RCE A	ND B	ENDI	NG M	OME	NT			1() hours
Concept	of shear for	ce and	bendi	ng moi	ment, S	S.F and	1 B.M.	diagra	ams fo	r canti	lever, S	imply	supporte	d, Over
hanging	beams sub	jected	to Po	int lo	ads, U	Jniforr	nly di	stribut	ed loa	ads, U	niform	ly var	ying loa	ds and
combinat	tionof these	loads, I	Point o	f contr	a flexu	ıre.								
MOD	ULE-3		B	ENDI	NG ST	RESS	AND	SHEA	R ST	RESS			10) hours
Theory o modulus.	f simple ber	iding, E	Bendin	g equa	tion, E)etermi	ination	of flex	xural s	tresses	for sin	ple cas	ses, Sect	ion
	ess formula, ar, I, T sectio		stress	distrib	oution	across	variou	is bear	ms & s	sections	s - Rec	tangula	r, Circu	ar,

MODULE-4	TORSION AND DEFLECTION OF BEAMS	10 hours
-----------------	---------------------------------	----------

	NAR	AYANA E	NGINEER	ING COLI	LEGE:NEL	LORE		
		MET	AL FORMI	ING PROC	ESSES			R2020
Semester		Hours / V	Week	Total hrs	Credits		Max Marks	
	L T P C CIE SEE							TOTAL
IV	3	0	0	48	3	40	60	100

Γ

e-requi	site:
Knowledge	e of strength of materials is essential
Basics con	cepts of mechanical components and manufacturing processKnowledge in
engineerin	g materials
Basic knov	vledge in mathematical calculations
	bjectives:
The object	ive of this course is to
. Introduc	the concepts of one, two and three dimensional stress analysis, theory of plasticity, strain
nardening,	hot and cold working process.
2.Create av	vareness among the students on various types of rolling mills, forgings.
3Create a	wareness among the students on extrusions, wire drawing processes.
I. Underst	and the concepts of sheet metal operations.
5. Underst	and the concepts on plastic manufacturing processes and rapid manufacturing process and its
pplication	
Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Understand the basic concept on one, two and three dimensional stress analysis, theory of
~~ ~	plasticity, strain hardening, hot and cold working process [BL-2]
CO 2	Define different rolling and forging processes and their defects [BL-1]
CO 3	Familiarize the fundamentals of extrusion process and their industrial applications[BL-2]
CO 4	Identify various press working processes, their advantages and disadvantages. [BL-3]

					C	CO-PC) Map	ping						
СО						Р	0							PSO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2		1							1	2	2
CO2	1	1	1		1							1	2	1
CO3	3	2	2										2	1
CO4	1	1	1		1							1	2	1
CO5	1	1	1		1							1	2	2
	•				1:Lo	w,2-M	ledium	,3-Hig	h					
-						,		,	,					

	<u> </u>	1	ANA	IANA					EGE:	NELL	OKE			DO	000
0			TT	/ ***		IC EN				_			M	R2	2020
Semeste	er		Hou	rs / We	eek		То		Credit	8			Max Marks		
		L	r	Г		Р	n	rs	С		CIE		SEE	Т	DTAI
IV		0		0		3	48		1.5		40	-	60	10	-
		0		•		2			110				00	0	
Pre-requ	uisite: BAS	ICS IN	THE	RMO	DYNA	AMIC	S								
Course (Objectives:														
1.	Fo enable the	e studer	nts und	erstand	d the p	rincipl	es, wo	rking a	and per	forma	nce of l	C eng	gines.		
	Γo introduce				-	-									
	'o understand	-	•			-				•••					
	Fo teach stuc														
Course C	Dutcomes : A	itter su	ccessfu	il com	pletion	of the	course	e, the s	tudent	WIII D	e able to	0:			
CO1	Condu	t const	onton	and on	d vonio	hla ana	ad too	ta on I(7 an air		lintorm	not the			
	Conduct perform		_	eeu and	i varia	oie spe	eu tes	IS ON IC		ies and	1 merp	iet the	211		
CO2	Determ	,		timina	diagra	am of S	SI en oi	ne& C	Lengir	e (RI	-3)				
CO2 CO3	Estima				-				-			es(RI	-5)		
005	Apply				•		•				2 engine	5(DL	5)		
CO4	Experin		-				-		•		3)				
	I.			0				Map		、	,				
	СО						Р								PSC
			1				1				1	r			1
		PO	РО	РО	РО	РО	PO	РО	РО	PO	РО	P	РО	PSO	PS
		1	2	3	4	5	6	7	8	9	10	0	12	1	
	CO1		2	1								11	1	1	
	CO1 CO2	2	3	1									1	1	1
	CO2 CO3	2	1 2	1									1		2
	CO3	1	2 1	1						3	2		2	1	
	04	1	1	1		1.L o	w 2_N	[edium	,3-Hig		2		2	1	-
						1.L0	w,2-1v	leuluin	, <i>J-111g</i>	11					
						OURSE	E CON	TENT	Г						
		1 4	•,•		Cask 1		• +	•,•		.1 1					
Performan Tuels.	ce test on Sp	ark Igr	ntion e	ngine	and Co	ompres	sion Ig	gnition	using	the alto	ernate				
uc15.					Тя	sk-2									
/alve Tim	ing Diagram	of an 4	1 strok												
					Task	3									
Port Timin	ig Diagram o	of an 2-3	Stroke	Petrol	engine	е.									
					TASK										
	The second se	4 9	1 5												
	ce Test on a	4 -Stro	ke Die		-										
Performan					TA OT										
Performan					TASK	2-5									

	-	NARAYANA						D 2020
0 (of Materi	1			R2020
Semester		Hours /		Total	Credit	<u>ar</u>	Max Marl	
TX 7	L	T	P	hrs	C	CIE	SEE	TOTAL
IV	0	0	3	48	1.5	40	60	100
Pre-requisit								ioning and
preparation of		ings and to	understand	l symbols i	used in engi	neering dra	wings.	
Course Ob			• , ,	0, 1		0	1.D	
		t uni-axial te				Copper an	d Brass.	
	-	n compressi				1 1.		
		ine elastic co			using flexu	ral and tors	ion tests.	
		rdness of giv						1
	. 1 o acquire Ioduli	knowledge	on mechai	ncal prope	rties of mat	erials such	as various E	lastic
Course Out		r successful	completie	on of the or	ourse the st	udont will k	a abla to:	
	comes. And		completic		Jui se, the st			
CO 1	Understa	ad the stress	atuain hah	origina of d	lifforant mo	toriala (DI	2)	
CO 1		nd the stress-				terials.(BL-	-2)	
CO 2	1	he hardness of						
CO 3	-	he difference		-		-		<u>`````````````````````````````````````</u>
CO 4					•	0	on test(BL-1)
CO 5	Identify t	he toughness	of a spec	imen using	Impact test	ing machir	ne (BL-3)	
			COU	RSE CON	TENT			
	Т	ask 1 Tensio						
Study the stre					iron and (c)	Tor Steel 1	e conductin	a tension tes
on U.T.M	ss suamr		i) wind St	ci 0) Cast				g tension tes
	Т	ask 2 Comp	ression te	st on U.T.	M.			
Study the stre						Tor Steel 1	ne conductin	σ
compression t			i) wind Sit	CI U) Cast				5
I		ask -3 Com	ressive a	nd Shear s	trength			
Find the comp					-	f GI sheet h	v conducting	o relevant
ests.		i shear strong	ui oi woo	a and shea	r strength o		y conducting	Store valit
	Т	ASK -4 Brii	nell's and	l Vicker's	hardness			
Find the Brin	nell's and V	icker's hard	ness numb	ers of (a) S	Steel (b) Bra	iss (c) Alun	ninium	
(d) Copper.								
		ASK -5 Mo		-				
Determine the	e Modulus o	f rigidity (a)	Solid shat	ft (b) Hollo	ow shaft ma	de of steel	and	
aluminium.								
		ASK-6 Cor	-					
Find the sprin	•		rigidity of	f the mater	ial of a spri	ng by cond	ucting	
compression a	and tensile t	ests.						
	T.	ASK -7 Def	lection te	st.				
Determine the	e Young's m	nodulus of th	e material	by conduc	ting deflect	ion test on	a simply	
supported, an	-			•	C III		1 2	
		ASK -8 Def	lection te	st.				
	_							
Determine the	Young's m	nodulus of th	e material	hy conduc	ting deflect	ion test on	nronned	
Determine the cantilever bea	-	nodulus of th	e material	by conduc	ting deflect	ion test on	propped	

TASK -9 Impact strength .

Find impact strength of a given material by conducting a Charpy test

	NARAYANAENGINEERINGCOLLEGE:NELLORE													
Computer Aided Machine Drawing Lab R2020														
Semester	H	Iours /Weel	k	Total	Credit	MaxMarks								
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
IV	0	1	2	48	2	40	60	100						

Pre-requisite: Should possess basic knowledge in Engineering drawing, Standards, Dimensioning and preparation of neat drawings and to understand symbols used in engineering drawings.

Course Objectives:

- 1. To introduce students to the basics and standards of engineering drawing related to machines and components.
- To teach students technical skills regarding assembly, production and part drawings.
 3.To help students gain knowledge about standard CAD packages on modelling and

 drafting.
- 3. 4. To Communicate about the assemble and part drawings through the computer aided drawings.5.To familiarize students with various limits, fits and tolerances.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Define various standards, specifications, dimensioning methods followed while preparing
	Engineering drawings. (BL-1)
CO 2	Understand and practice to represent symbols for Foundation bolts and keys in
	drawings.(BL-2)
CO 3	Develop, assemble and sketch assembled views of mechanical systems. (BL-3)
CO 4	Develop suitable drawing views to represent part drawings of different machine parts in
	CAD software. (BL-3)
CO 5	Design machine components and assembly using CAD software. (BL-3)

	CO-PO Mapping														
СО	PO														
	PO	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	1	1										1	1		
CO2	1	1										1	1		
CO3												1	1		
CO4	1	1										1	1		
CO5	1	1										1	2		
		1: Lo	w, 2-N	/lediun	n, 3-Hi	igh									

COURSE CONTENT

PART -A The following contents are to be done by any 2D software package

Task 1

- 1. Conventional representation of materials.
- 2. Conventional representation of machine components.

Task 2 Conventional representation

- 1. Conventional representation of dimensioning on the drawings.
- 2. Conventional representation sectional views.

	NARAYANA ENGINEERING COLLEGE:NELLORE													
	Design of Transmission Systems R2020													
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	rks						
	L	Ť	Р	hrs	С	CIE SEE	TOTAL							
VI	3	0	0	48	3	40	60	100						
1. To g Med 2. To t Tra 3. To 1 Course O	VI 3 0 0 48 3 40 60 100 Course Objectives: 1. To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components. 2. To understand the standard procedure available for Design of Transmission of Mechanical elements 3. To learn to use standard data and catalogues Course Outcomes: After successful completion of the course, the student will be able to:													
CO 1	Design	for the d	ifferent	types of	belt drive	es (BTL-4	4)							
CO 2	-				alysis of			L-4)						
CO 3	Design	of bevel,	worm a	nd helica	al gears (BTL-4)	•							
CO 4	Design	of differe	ent gear	boxes (B	TL-4)									
CO 5	Design	of cams	and ana	lysis of p	orofiles (I	3TL-4)								

	CO-PO Mapping														
	PO												PSO		
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1			3		1										
CO2		2	3		1										
CO3			3		1										
CO4			3		1										
CO5		2	3		1										
		•	•	•	1:	Low	, 2-N	Iediu	ım, 3	- Hig	gh	•	-	-	

NARAYANA ENGINEERING COLLEGE:NELLORE														
	Thermal Power SystemsR2020Hours / WeekTotalCreditMax Marks													
Semester	He	ours / We	ek	Total	Credit		:ks							
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
V	3	0	0	48	3	40	60	100						
Pre-Requ	Pre-Requisite: Thermal Power Systems													
Course Objectives:														
1. To understand working steam power plant														
2. To explain the functions of steam nozzle														
3. To draw	3. To draw velocity diagram of steam turbine													
4. To unde	erstand wor	king of je	t propulsio	n										
5 To defin	ne the basic	s of refrig	geration and	d air cond	itioning sy	stem								
Course Ou	itcomes: A	fter succe	ssful comp	letion of the	ne course, t	he student	will be abl	e to:						
00.1	.													
CO 1	1	2	t of various	1	1	and boilers	s operation	. (BTL-5)						
CO 2	Understan	d the stag	nation prope	rties.(BTL	2)									
CO 3	Solve the p	oroblems of	on turbine ve	elocity diag	gram. (BTL	-6)								
CO 4	Explain th	e working	of gas turbi	nes. (BTL-	2)									
CO 5	Analyze th	e working	g of vapor co	ompression	refrigeratio	on cycle. (B	STL-4)							

	CO-PO Mapping														
СО	PO PSO													50	
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	0	8	9	10	11	12	1	2	
							7								
CO1	3	3	2										3		
CO2	3	3	2										3		
CO3	2	3	2										3		
CO4	3	2	2										3		
CO5	3	2	2										3		
					1: Lo	w, 2-M	ledi	um, 3- H	igh						

	NAF	RAYANA	ENGIN	EERING	COLLEC	E:NELI	ORE	
			Dynamic	es of Mac	hinery			R2020
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	rks
	L	Ť	Р	hrs	С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	100
 Ana flyv Far mo Use 	blain the i alyze the i wheel niliarizes tor cycle a es of gover blain the i utcomes	mportar curning t the conc and mote mors an <u>need of t</u>	moment d cept of gyr or cars d its appl palancing	liagrams roscope a ications of rotatir	apply for 1 and discu nd its app ng and rec etion of th	ss the ap dications	oplications for aero j og masses	s of plane,
CO 1			effect of r	eactive gy	/roscopic	couple or	n the stab	ility of
CO 2	Underst	and the	use of gov	vernors (H	3TL-2)			
CO 3	Identify	and corr	ect the u	nbalance	s of rotati	ng body ((BTL-4)	
CO 4	Reduce	the mag	nitude of	vibration	(BTL -4)			
CO 5	Explain	isolate v	vibration	of dynam	ic system	s (BTL-4)		

	CO-PO Mapping														
							PO						PS	60	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1			3		2										
CO2			3												
CO3			3		2										
CO4			3		2										
CO5															
			•	•	1:	Low	, 2-N	Iediu	im, 3	B- Hig	gh				

NARAYANA ENGINEERING COLLEGE: NELLORE													
			HE	AT TRANSF	ER			R2020					
Semester	He	ours / We	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
OE	3	0	0	48	3	40	60	100					
2. 3. 4.	 To impar application To familia To explain To explain To explain 	t the basic ons arize the c in basics c in basics c related to t stand the	convective h of radiation h	eat transfer neat transfe neat transfe ems like he	r concepts r r and to ma eat exchange	ke conversa ers, evapora	ant with the ator, and co						
Course Out			sful compl										
	various ap	plications											
CO 2	Evaluate h	eat transf	er for forced	d and free o	convection	application	S						
CO 3	Explain the radiation heat transfer problems.												
CO 4	Calculate the parameters of heat exchangers, condensers and evaporator using LMTDand NTU Methods for various applications.												
				anous ap	plications.								

	CO-PO Mapping															
СО						Р	0						PS	50		
	PO	PO	PO	PO	PO	РО	Ρ	РО	РО	PO	PO	PO	PSO	PSO		
	1	2	3	4	5	6	0	8	9	10	11	12	1	2		
		7														
CO1	3	1												2		
CO2	2		2									1				
CO3	1	2	1													
CO4	2	1	1		2				2				1	1		
CO5	2			1	2							1				
					1: Lov	<i>N</i> , 2-M	ledi	um, 3- Hi	gh							

		NA	RAYA	NA I	ENGI	NEER	RING	COL	LEGE	:NEI	LOR	E		
					R INT	FEGR A		-		TURI	NG			R2020
Semester		Hour	s / We	ek		Tota	l hrs	Cred	lit			Ma	x Marks	1
	L		Т	F					С		CIE		SEE	TOTAL
	3		0	0)	43	8		3		40		60	100
Course Obj	 Telefont Telefont<	o unde o deve omput o unde anufac o unde o unde o unde	elop a er Aic erstand cturing erstand erstand	n und led Pro l the c g. l the u l the u	erstan ocess liffere se of se of	Planni ent me FMS i robotio	of the ing. thods n CIM cs in n npletio	unde to im I envir nanufa n of th	rlying prove ronme acturir <u>e cours</u>	know applic nt. ng env	vledge cation ironm studer	e and of Gr ment.	related	methods c chnology i
						$\frac{AD}{C}$						1	· (D	T 1)
CO2													$\frac{\text{ning.}(B)}{(BL,2)}$	
CO3 CO4													(BL-2)	
C04 C05													<u>g.(BL-3</u> .(BL-2)	
0.05	10	entity	uie a	ррпса	1011 0						11110	mieill	.(DL-2)	1
CO	CO-PO Mapping PO PSO													
	PO 1													
C01	3	3	2	1	1	-	-	-	-	-	-	-	2	2
CO2	3	3	1	1	-	-	-	-	-	-	-	-	2	2
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	1
CO4	2	2	2	2	2	-	-	-	-	-	-	-	2	2
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	2
						Low,2-			Č.					
MODUL	E – 1					INTE	RODU	JCTI	ON					9h
Brief introdu Engineering- Manufacturin Production a MODUL Process plan Process Plan Requirement	CIM ng Con nd Just <u>E -2</u> ning – ning –	conc ntrol - t-In-T Com Aggr	epts – – Bas ime P	– Con sic Ele roduct CO Aided Produ	npute ement tion. MPUT Proce	rised s of a FERIS ess Plan Planni	eleme n Aut ED PH nning ng and	nts or omate ROCE (CAP d the l	f CIM ed syst SS PL P) – L Master	I syst iem – ANNI ogica	em – Leve NG l steps uction	Types ls of A	of pro Automa	oduction — tion — Lear 10h
MODUL Group Techr Production fl	ology				es – P		lassifi	cation	and c	oding				
and layout – Arranging M	Quant	itative	e analy	sis in	Cellu	lar Ma	anufac							

	NA	RAYANA	ENGIN	EERING	COLLEC	SE: NELL	ORE	
			Sma	rt Mater	ials			R2020
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
Course O	bjectives:							
1. To s	study vario	ous types o	f smart n	naterials us	ed in engi	neering ap	plication.	
2. To s	tudy vario	us propertie	es i.e. opti	cal, electric	, dielectric	etc. of sma	rt materials	•
3. To s	study diffe	rent synth	esis techr	niques of s	mart mate	rials.		
4. To s	tudy differ	ent charact	erization	techniques	of smart m	aterials.		
5. To s	study devic	es based or	n smart ma	aterials suc	h as sensors	s, actuators	etc.	
Course Out	comes: Af	ter success	ful comp	letion of th	ne course, t	he studen	t will be abl	le to:
CO 1	Understa	nd various	smart m	aterial kin	ds applied	to enginee	ring. (BTL-	2)
CO 2	Demonst materials		arious op ¹	tical, electi	ic, dielectr	ic, etc. pro	perties of i	intelligent
CO 3	Classify d	ifferent sm	nart mate	rial manuf	acturing m	ethods. (B [·]	TL-4)	
CO 4	Explain va	arious met	hods for	characteri	ing smart	materials.	(BTL-2)	
CO 5	Develop	products r	nade of s	mart mate	rials, as se	nsors, actu	ators, etc.	(BTL-3)

					(CO-PO	Map	oing							
CO		РО													
	PO	РО	РО	РО	РО	РО	PO	PO	PO	РО	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2													1	
CO2		1										1		1	
CO3				1											
CO4	1	2											1	1	
CO5				2								1			
					1: Lo	w, 2-N	ledium	n, 3- Hi	gh						

	COURSE CONTENT	
MODULE – 1	INTRODUCTION	9 Hours

NARAYANA ENGINEERING COLLEGE: NELLORE														
	AUTOMATION IN MANUFACTURING													
Semester	Н	lours / Wee	ek	Total	Credit	Max Marks								
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
OE	<u>3</u> 0 0 48 3 40 60													

COURSE OBJECTIVES:

1. To understand the principles of automation.

2. To understand and outline the system configurations used in atmated production.

3. To recognize and articulate the foundational assumption of the transfer mechanism, types of transfer mechanism that may be used for work part transfer

4. To understand principle of FMS and group technology.

5. To understand importance of inspection.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	understand to know what is automation, types of automation, components of automation, strategies and levels of automation.(BTL-1)
CO 2	understand to know basic elements of automated systems.(BTL-2)
CO 3	understand the components of manufacturing systems.(BTL-2)
CO 4	understand the group technology and flexible manufacturing systems .(BTL-2)
CO 5	understand importance of inspection .(BTL-3)

	CO-PO Mapping														
СО						Р	0						PS	50	
	PO	PO	PO	PO	PO	PO	Ρ	РО	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	0	8	9	10	11	12	1	2	
							7								
CO1	3		3											2	
CO2	3				3							1			
CO3	3			1											
CO4	3	1							2				1	1	
CO5	3			2								1			
	÷				1: Lov	w, 2-N	ledi	um, 3- H	igh						

	NAF	RAYANA	ENGINI	EERING	COLLEC	E:NELL	ORE	
		A	UTOMATI	ON & RC	BOTICS			R2020
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	rks
	L	T	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
Pre-Requ	lisite: (CAD/CA	M					
Course C)bjectiv	es:						
wor 2. To kine 3. To 4. To	kspace a Get acqu ematics o Get knov Learn ab Understa utcomes	nd gener ainted w f the rob vledge an out varic nd the p	d analysi us sensor resent &f	robots. ming spa s skills a rs, actuat uture apj	tial trans ssociated cors, robo plications	formation with traj t progran of a robo	ns and so ectory pla nming ot	anning
CO 1			0	f industri	al robots,	characte	eristics, er	nd effectors
CO 2		· ·	nsformati	on to obt	ain forwa	rd and in	verse kin	ematics
CO 3	Solve rol planning		mics prob	olems, gei	nerate join	nt traject	ory for pa	th
CO 4	Describe operatio	-	g principle 2)	e of variou	us sensor	s and pro	ogram diff	ferent
CO 5	Apply th	e applica	tions of r	obots in i	industry.	(BTL-3)		

					C	0-PO	Μ	apping						
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	Ρ	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	O	8	9	10	11	12	1	2
							7							
CO1			3					2						
CO2			3					2						
CO3			3					2						
CO4			3					2						
CO5			3					2						
	•	•		1	: Low	, 2-M	edi	um, 3-	High			•	•	•

	COURSE CONTENT	
MODULE – 1	AUTOMATION	10 Hours

	NA	RAYAN	A ENGIN	EERING	COLLEG	E:NELL	ORE	
		A	UTOMOB	ILE ENG	INEERIN	١G		R2020
Semester	He	ours / We	ek	Total	Credit		Max Mar	`ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
Pre-Requ		ics in Th	ermal Eng	ineering				
Course O	bjectives:							
1. To unde	rstand the	working o	of automob	ile compo	nents			
2. To illust	rate the pri	nciple of	ignition sy	vstem				
3. To gain	the knowle	dge on st	eering and	suspensio	n system			
4. To stud	y construct	ion of wh	eel and dif	ferent bra	ke system			
5 To unde	rstand the	working o	of Automo	bile Elect	rical syster	n		
Course Ou	itcomes: A	fter succes	ssful comp	letion of th	ne course, t	he student	will be abl	e to:
CO 1	Illustrate	the worki	ng of auto	mobile co	mponents	(BTL-2)		
CO 2	Demonstr	ate the w	orking of d	lifferent ig	nition and	fuel syste	ms (BTL-2	2)
CO 3	Identify the	ne princip	le of steeri	ng geome	try and wh	eel alignn	nent.(BT L	.3)
CO 4	Predict the	possible f	failures in th	e braking s	systems.(B7	- L5)		
CO 5	Identify N (BTL-3)	Iodern te	chnology a	nd safety	measures ı	ised in Au	tomotive '	Vehicles.

					C	CO-PC) M	apping						
СО						Р	0						PSO	
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	2											3	
CO2	3	1											3	
CO3	3	1											3	
CO4	2	1											3	
CO5	2	1											3	
	•	•	•	•	1: Lo	w, 2-M	ledi	um, 3- H	igh		•			

	INAL	KAYAN	A ENGIN	EERING	COLLEG	E: NELL	ORE	
		(COMPOSI	TE MAT	ERIALS			R2020
Semester	He	ours / We	ek	Total	Credit		Max Mar	:ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
 To define materials. To expl To appl To under To expl 	Objectives: ne composit ain micro r y the know er the metal ain the mic Dutcomes :	nechanic ledge of l matrix c romecha	al analysis biaxial strep omposites nics of Fail	of a lamin ngth theor materials lure of Un	a ies in solvi idirectiona	ng the pro l Lamina	blem	l be able to:
CO 1		e compos	ite materia	l and char	acteristics	of compos	ite materia	1.
	.(BTL-1)					I		us
CO 2	Explain n		chanical an Rule of mix	alysis of a	lamina an	Ĩ		
CO 2 CO 3	Explain n elastic mo	duli by I		alysis of a ture(B]	lamina an Г L-2)	d evaluati	on of the	four
	Explain melastic mo	oduli by I numerica	Rule of mix al problems tal Matrix (alysis of a ture(B 7 s on Tsai-1	lamina an F L-2) Hill theory	d evaluati v, Tsai, Wu	on of the t	four

					C	O-PO	M	apping						
CO						P	0						PS	50
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	C	8	9	10	11	12	1	2
							7							
CO1	3	3										2	2	
CO2	3	3										2	2	
CO3	3	3										2	2	
CO4	3	3										2	2	
CO5	3	3										2	2	
]	l:Lov	v, 2-M	ledi	um, 3- I	High					

	<u> </u>	NARAY.	ANA EN	GINEE	RING CO)LLEGE:	NELLO	RE	
			Desig	n of Mate	rial Handl	ing Equipn	nent		R2020
Semester		He	ours / We	ek	Total	Credit		Max Ma	rks
		L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI		3	0	0	48	3	40	60	100
 To exp To cla To un To un To un 	derstand a plain the c ssify the derstand derstand	about ma design of different design o the envir	f hoisting types of f Bucket ronmenta	Equipme conveyor elevators Il and hur	ent likes: rs :: Loading nan facto	Wire and g and buck rs in mate	et arrange	ements	
CO 1	Underst	and mat	terial han	dling equ	ipment w	orking pri	inciple in	detail.(B7	TL-2)
CO 2	Explain chains.(E	-	n of hoistin	g Equipme	ent likes: W	ire and Hem	ip Rope, We	elded and ro	oller
CO 3	(BTL-3)	• 1	-		application		•	S
CO 4	Explain	the con	cept of lo	oading an	d bucket	arrangeme	ents.(BTL	-2)	
CO 5	Explain	about e	nvironme	ntal and h	uman fact	ors in mate	rial handli	ng.(BTL-2	2)

	CO-PO Mapping													
CO						P	0						PSO	
	PO1	01 PO2 PO PO PO PO PO PO PO PO PO											PSO1	PSO
			3	4	5	6	7	8	9	10	11	12		2
CO1	2	2										2	2	
CO2	2	2										2	2	
CO3	2	2										2	2	
CO4	2	2										2	2	
CO5	2	2										2	2	
	•	•			1: Lo	w, 2-1	Mediu	m, 3- Hig	gh	•			•	•

NARAYANA ENGINEERING COLLEGE:GUDUR														
	MATERIALS HANDLING EQUIPMENT R2020													
Semester	Hours	/ Week		Total hrs	Credits	Max Marks	5							
	L	Т	Р		С	CIE	SEE	TOTAL						
VI	3	0	0	48	3	40	60	100						

		1	AKAI				RING IG OPT				OKE			R2020
				Ľ						•				112020
lemester		Hou	rs / We	eek		To	tal hrs	Cre	edit			Max	x Marks	
	L		Т		Р				С		CIE	2	SEE	TOTAL
/Ι	3		0		0		48		3		40		60	100
Course O	bjectiv	es:				-				-				
 To acquing To deving To undern project 1 To proving To proving To acquing To method 	elop for erstand nanage vide a sy uire kno	rmula the co ment. ystem	tion sl oncept atic pr ge on o	cills in s of P: rocedu	n trans roject ure for	sportat Evalu deter	tion me ation f mining	odels a Review g the c	and fin w Tec optima	nding hniquo 1 com	solution e and bination	ons. Critica on of e	al Path	Methenns.
Cour CO1		& unde	erstand	the di		1							be able	
000			<u>n.(BL-</u>		1 . 11	•			1.1	1.0	11	1		2)
CO2													s.(BL-	
CO3						t Evalu	lation I	Review	Tech	nique a	and Cr	itical F	ath Me	thod in
CO4	1 U		nageme			for de	termin	ing the	ontim	al con	hinati	on of a	lecision	s.(BL-2)
CO5								<u> </u>	<u> </u>					ligms and
	metho						1	•			•			
					(CO-PO	Марр	ing.						
						Р	0							SO
СО														
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO 12	PSO 1	PSO
	1	2	3	4	5	PO 6	PO 7	PO 8	РО 9 -	PO 10	РО 11 -	12	1	
CO1	1 2	2 2	3 2	4 2	5 2							12	1 2	PSO
CO1 CO2	1 2 2	2 2 1	3 2 1	4 2 1	5 2 1							12 1 1	1 2 1	PSO
CO1 CO2 CO3	1 2 2 2	2 2 1 1	3 2 1 1	4 2 1 1	5 2 1 1	6 - -						12 1 1	1 2 1	PSO
CO1 CO2 CO3 CO4	1 2 2 2 1	2 2 1 1 1	3 2 1 1 1	4 2 1 1 1	5 2 1	6 - -						12 1 1 1 1	1 2 1 1 1	PSO
CO1 CO2 CO3	1 2 2 2	2 2 1 1	3 2 1 1	4 2 1 1	5 2 1 1 1 1	6 - - - - -	7 - - - - -	8 - - - - -	9 - - - - -			12 1 1	1 2 1	PSO
CO1 CO2 CO3 CO4	1 2 2 2 1	2 2 1 1 1	3 2 1 1 1	4 2 1 1 1	5 2 1 1 1 1 1: Lo	6 - - - - w, 2-N		8 - - - , 3- Hi	9 - - - - gh			12 1 1 1 1	1 2 1 1 1	PSO
CO1 CO2 CO3 CO4	1 2 2 2 1 2	2 2 1 1 1	3 2 1 1 1	4 2 1 1 1 1	5 2 1 1 1 1 1: Lo C	6 - - - - w, 2-N OURS	7 - - - - 1edium	8 - - - , 3- Hij	9 - - - - gh T	10 - - - -	11 - - - -	12 1 1 1 1	1 2 1 1 1	PSO

3. Understand the various the theory and numerical methods needed to understand and solve the mathematical problems.

MODULE -2	TRANSPORTATION PROBLEM	9h

NARAYANA ENGINEERING COLLEGE:NELLORE											
			Finite El	ement N	lethod			R2020			
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	rks			
	L	Ť	Р	hrs	С	CIE	SEE	TOTAL			
VII	3	0	0	48	3	40	60	100			
Course (The subjection discretization for simplection approach, functions. To learn temperature Course O be able to	ect shoul tion in fin e elemen use the the appli ure. and b utcomes	d enabl ite eleme its, find various cation o oundary	ent approa the var elements f FEM to condition	ach, form ious apj s for dis various us and he	stiffness proach fo cretization structura at transfe	matrices ollowed i n and le al proble er proble	and force in finite earn abou ems incor ns.	e vectors element at shape porating			
CO 1	Solve co	mplex p	roblems	using FF	M (BTL-6	5)					
CO 2		<u> </u>		<u> </u>	· ·	/	regular t	oundaries			
CO 3	Impleme (BTL-3)	ent solut	ion techr	niques fo	r higher o	order pro	blems in	practice.			
CO 4	Determi	ne the t	hermal st	resses (E	3TL-3)						
CO 5	Apply co (BTL-3)	oncepts	for model	ing of no	n-linear	materials	s and geo	ometry			

						C	0-PC) Ma	ppir	ıg				
		PS	0											
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	1	2											
CO1														
CO2			2											
CO3			3									2		
CO4			3	2								2		
CO5			3		3							2		
	•	•	•	•	1:	Low	, 2-N	Iediu	im, 3	- Hig	gh			

	TN	ARAYAN	NA ENGIN	EERING	COLLE	GE:NELI	LORE	
		FL	EXIBLE MAN	IUFACTURI	NG SYSTEN	٨S		R2020
Semester	Н	ours / We	ek	Total	Credit		Max Mar	rks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
 2.To Discu 3. To the c 4. To Analy 5 To Summer 	nine the bas uss the sche oncepts of (yze and con marize the (ic concept duling and Group Tec trol the so concepts c	hnology to t	methods u he develop ponents of ends and a	used in mar oment of FN FMS. pplications	of FMS.	systems.	le to:
CO 1			sic concep tems.(BTL-	-	n procedu	res and m	odes of	
CO 2	Understa	nd the co	ncepts of c	leveloping	the manu	Ifacturing	systems.(E	3TL-2)
CO 3	Acquire t applicatio		edge on foi 3)	rmulation	of Group	Technolo	gy and its	
CO 4	Understa software		concepts le manufac				stems and	d
CO 5	Understa	nd concep	ots of moder	n trends a	nd applicat	ions of FMS	S(BL5)	

					(CO-PO	M	apping					
СО						Р	0					PS	50
	PO 1	PO 2	PO 12	PSO 1	PSO 2								
CO1	3	1											2
CO2	2		2								1		
CO3	1	2	1										
CO4	2	1	1		2				2			1	1
CO5	2			1	2						1		
					1: Lov	w, 2-M	edi	um, 3- Hi	gh				

		NARA	YANA ENG	INEERING	COLLEGE:	NELLORE		
		G	AS TURBINE	S AND JET	PROPULSIC	ON		R2020
Semester	Н	ours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
 To Acquand its efficiency To Desc To Eval To Ident 	ciencies. ribe the diff uate, enum ify the esse	ge about i erent oper nerate, ar ntial princ	the gas turb rating mode nd resolve p iples, uses, a of different c	s for gas tu problems o and workin	irbines. of jet prop gs of rocke	ulsion t and Ram	engines.	
Course Ou	tcomes: Af	ter succes	sful compl	etion of th	e course, t	he studen	t will be ab	le to:
CO 1 CO 2			ndamentals modes perta		-	-	ing cycles.(BTL-1)
			-					
CO 3	-		and solve p		-			
CO 4			c fundamen ies. (BTL-4)	tals, applic	ations and	operations	s of Ram	
CO 5	Illustrate t	he differe	nt compone	nts and its	functions	of Rocket T	echnology	'BTL_5)

					(CO-PO	M	apping						
СО						Р	0						PS	50
	PO 1	PO 2	PO 12	PSO 1	PSO 2									
CO1	3	1												2
CO2	2		2									1		
CO3	1	2	1											
CO4	2	1	1		2				2				1	1
CO5	2			1	2							1		
	•	•	•	•	1: Lov	w, 2-N	ledi	um, 3- Hi	gh	•	•	•		

	NA	RAYAN	A ENGIN	EERING	COLLEG	E:NELL	ORE						
		HYDRA	AULIC &	PNEUMA	TICS SY	STEMS		R2020					
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
VII	3	0	0	48	3	40	60	100					
Pre-Requ	isite: BAS	SICS IN I	HYDRAU	JLICS &	PNEUMA	ATICS							
Course O	bjectives:												
1. To understand various properties of fluids and basics of hydraulics													
2. To define the purpose of Actuator													
3. To ident	tify the wo	rking of h	ydraulic ci	rcuits									
4. To unde	erstand the	working o	of compres	ssors									
5 To descr	ribe the tro	uble shoo	ting and re	emedies in	Hydraulic	and Pneu	matic syste	ems					
Course Ou	itcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	e to:					
CO 1	Calculate	the fluid	properties	and flow c	characteris	tics (BTL-	-3)						
CO 2	Explain the	he workin	g of hydra	ulic actuat	or (BTL-2	()							
CO 3	Calculate	the flow of	of fluid in	hydraulic	circuits (B	TL-3)							
CO 4	Solve the	problems o	n Pneumati	ic system (I	BTL-3)								
CO 5	Illustrate o	lifferent ap	plications of	of hydrauli	c and pneur	natic syster	m (BTL-4)						

	CO-PO Mapping CO PO PSO															
CO						P	0						PS	50		
	PO	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	PO	PSO	PSO		
	1	1 2 3 4 5 6 0 8 9 10 11 12														
CO1	3	1											3			
CO2	3															
CO3	3	2											3			
CO4	3	2		2									3			
CO5	3	2		2									3			
					1: Lov	w, 2-M	lediu	m, 3- Hi	igh							

COURSE CONTENT

	N	ARAYA	NA ENGI	NEERIN	G COLLE	GE:GUD	UR	
			Industri	al Engino	eering			R2020
Semester	Н	ours / We	ek	Total	Credit		Max Mar	·ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
 To org To pro To To To 	anization. study the s duces. improve th know sou	the fur systemati ne design ind Inven	c method	of improv ion of the agement	ing the val workspac techniques	agement a ue of a pro e by using 5 by maint	oduct that method s	a project tudy.
						hasing and he student	· ·	
CO 1	Explain th	ne core id	eas in man	agement,	administra	ation, and o	organizatio	on. (BTL-1)
CO 2	Evaluate	the syster	natic appro	bach of ind	reasing th	e value of a	product.	(BTL-6)
CO 3	Apply me workspac		-	ce the lay	out and co	ndition of t	he	
CO 4	<mark>Evaluate</mark> (BTL-1)	the right a	amount of	inventory	on hand to	<mark>o satisfy co</mark>	nsumer de	emand.
CO 5	Defined s control et			e of engine	ering proc	luction, pu	rchasing a	nd quality

					(CO-PO	Map	oing								
CO		PO PSO														
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO		
	1	<u>1</u> 2 3 4 5 6 7 8 9 10 11 12 1														
CO1	1															
CO2		1										1		1		
CO3																
CO4	1	2											2	1		
CO5				1								1				
CO6	2	2 3														
	•			•	1: Lov	w, 2-M	ledium	n, 3- Hi	gh		•					

COURSE CONTENT MODULE – 1 INTRODUCTION 10 Hours												
MODULE – 1	INTRODUCTION	10 Hours										
Taylor's Scientific Ma Theory X and Y, Hertzl	nent-Administration and Organization – Functions nagement, Fayol's Principles of Management, Do perg's Two factor Theory of Motivation, Maslow's H al Structures Functional- virtual - Matrix Basic Co	ouglas Mc-Gregor's lierarchy of Human										
MODULE -2	Plant location AND PLANT LAYOUT	10 Hours										
Plant Location : Objectives, Product Life Cycle, – Factor Considerations in Plant Location, Comparative Study of Rural and Urban Sites, Methods of Selection of Plant Layout, Objectives of Good layout, Principles, Types of Layout, Line Balancing.												
MODULE-3WORK STUDY10 Hours												
Work Measurement -	s, Method Study – Steps Involved – Various Types o Definition, Time Study, Steps involved - Equipment, g - Allowances, Standard Time Calculation. Work Sa	Different Methods										
MODULE-4	INVENTORY MODELS	9 Hours										
	EOQ Models – With and Without Shortages Models obabilistic Models –Discrete Variable, Continuous	•										
MODULE-5	INSPECTION & QUALITY CONTROL	9 Hours										
Inspection & Quality Control: Statistical Quality Control- Techniques-Variables and Attributes- Control Charts: X and R Charts; P Charts and C Charts. Acceptance Sampling Plan - Single Sampling and Double Sampling Plans- OC Curves. Introduction to TQM- Quality circles												
	Tota	l hours: 48 hours										

	NARAYANA ENGINEERING COLLEGE:NELLORE INDUSTRIAL MANAGEMENT R2020													
			NDUSTRIA		GEMENT			R2020						
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
OE	3	0	0	48	3	40	60	100						
 Course Objectives: to understand the Basic management. to understand strategic management. to understand statistics in quality control and management. to understand human resource development. to understand management information systems. Course Outcomes: After successful completion of the course, the student will be able to: 														
CO 1	<mark>know the</mark>	concept (of Basic m	anagemer	nt and Leve	els of man	agement (<mark>BTL-1)</mark>						
CO 2	know str	<mark>ategic ma</mark>	nagement	<mark>(BTL-2)</mark>										
CO 3	Apply the	<mark>statistics ir</mark>	<mark>า quality co</mark> ı	ntrol and m	nanagemen	<mark>t. (BTL-2)</mark>								
CO 4	<mark>understa</mark> i	nd the ob	jectives of H	HRM .(BTI	<mark>2)</mark>									
CO 5	understa	nd manage	ment infori	mation sys	tems.(BTL3)								

					(CO-PO	Ma	apping							
СО		PO													
	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	Р О 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	2		3									1		2	
CO2	1				3						1	1			
CO3	2			1								1			
CO4	2	1		1					2		1		1	1	
CO5	3			2								1			
		•		•	1: Lov	w, 2-M	edi	um, 3- Hi	gh						

	NAI	RAYANA	ENGINI	EERING	COLLEG	E:NELI	ORE	
		INTEL	LIGENT MA	NUFACTU	RING SYSTE	MS		R2020
Semester	Но	urs / W	eek	Total	Credit		Max Ma	rks
	L	T	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
2. App 3. Exp 4. Des	rn compu oly the pr olain varie cribe the nonstrate	uter integ inciples o ous proce Group T e knowleo	of artificia ess plann `echnolog lge group	l intellige ing techr y based o technolo	ing system ence in ma iques in i on knowle ogy in auto etion of th	anufactu ntelligen dge base omated r	t manufao system nanufactu	cturing 1ring
CO 1	<mark>Assess t</mark>	he perfor	mance of	manufa	cturing sy	<mark>stems</mark>		
CO 2	-	a systecturing s		pproach	for desi	gn and	impleme	entation of
CO 3	00	new pro		o improvo	e the prod	uctivity (of existing	g
CO 4	Utilize o	nline coll	laboratior	ı t <mark>ools to</mark>	work in c	omplex t	eams	
CO 5	study th	le group	technolog	y				

	CO-PO Mapping													
		PSO												
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3						2							
CO2	3			2			2							
CO3	3						2							
CO4	3			2			2							
CO5	2						2							
	•				1:	Low	, 2-N	Iediu	im, 3	B- Hig	gh	-	•	

	NA	RAYAN	A ENGIN	EERING	COLLEC	SE:NELL	ORE	
			MANAG	EMENT SC				R2020
Semester	He	ours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
V	3	0	0	48	3	40	60	100
	bjectives: To underst	and the co	preept of n	nanageme	nt and Oro	anization	designs	
	To explain							t
	To develop		-					
	To explain						ine inactare	
	Gain know				-			
Course Ou	itcomes: A	fter succes	ssful comp	letion of t	he course, 1	he student	will be abl	e to:
CO 1	Explain the designs	ne import	ance of ma	nagement	science ar	nd types of	forganizati	ion
CO 2	Illustrate a	bout oper	ations mana	agement an	d material	nanagemer	nt	
CO 3	Summariz	ze the hur	nan resour	ce manage	ement oper	ations and	process	
CO 4	Explain t	he SWO7	T analysis a	and Projec	t managen	nent netwo	ork analysis	8
CO 5	Define the Requirem	-	U	ement Inf	formation S	System and	d Material	s

					(CO-PO	Ma	pping							
СО															
	PO	PO	PO	PO	PO	PO	Ρ	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	0	8	9	10	11	12	1	2	
							7								
CO1	1		2						2						
CO2	1	2		1								1			
CO3		1	1						1						
CO4	1	1								1					
CO5												1			
CO6		2	1	1								1			
					1: Lo	w, 2-M	lediu	m, 3- Hi	gh						

	NARAYANA ENGINEERING COLLEGE:NELLORE Manufacturing & Inspection of Gears R2020												
		Manufa	cturing	& Inspec	ction of G	ears		R2020					
Semester	Ho	urs / We	eek	Total	Credit		Max Ma	rks					
	L	Ť	Р	hrs	С	CIE	SEE	TOTAL					
VII	3	0	0	48	3	40	60	100					
sing 2. To mar 3. To met 4. To d the acce 5. To insp	identify de and d Describe nufacture Discuss hod . letermin inspecti ept/rejec Specify t	methods ouble he e the r e and in the "f e accept on data t status he data <u>rocesses</u>	elical, an nethodol spection eatures" ability fo a for pu required s on an e	nd bevel logy and of each associa or a spec urposes d to con engineer	ated wit cific appli other th trol both ing draw	n gears lying th h each ication, an simj the ma ing.	neory fo manufa and inte ply dete nufactur	r basic acturing rpreting rmining ing and					
Course O student w			success	sful con	npletion	of the c	ourse, tł	ne					
CO 1	<mark>To deve</mark>	lop the o	different	types of	gears (B	TL-3)							
CO 2					nelical ar	nd bevel	<mark>gears (</mark> B	TL-2)					
CO 3	To finis	h the ge	ars by h	obbling	(BTL-4)								
CO 4	To learr	<mark>i the</mark> qu	ality star	ndards to	oth thick	ness (BT	<mark>L-2)</mark>						
CO 5	To learn	n the pro	oduction	of gears	with die	casting	(BTL-2)						

	CO-PO Mapping														
	PO PO<													0	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3				2		2								
CO2	3			2			2								
CO3	3			2											
CO4	3			1	2		2								
CO5	3				2										
					1:	Low	, 2-N	Iediu	ım, 3	8- Hig	gh				

	COURSE CONTENT	
MODULE-I	INTRODUCTION TO	10 Hrs

	NA	RAYAN	A ENGINI	EERING	COLLEG	E: NELL	ORE	
			Med	chatroni	cs			R2020
Semester	Η	ours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
 Tor Tos Tos 	understand esearch dif tudy impor tudy variou lescribe the	ferent kind tance of h is types of various in	ificance of r ds of electro ydraulic and digital elect nterface dev sful comple	onic device d pneumat tronic syste vice kinds.	s. ic systems. ems.			le to:
CO 1		0	icance of se			•	ns. (BTL-4)
CO 2	Understa	nd variou	s types' ele	ctronic de	vices. (BTL	-2)		
CO 3	Illustrate pneumati	•	rtance of a	ctuation s	ystems, bo	th hydraul	ic and	
CO 4	Understa	nding of a	digital elect	ronic syst	ems. (BTL-	2)		
CO 5	Illustrate	tha cignif	icanco of m		orfacos /			

	CO-PO Mapping														
СО						Р	0						PSO		
	PO	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1														1	
CO2		1										1		1	
CO3				2											
CO4	1	1											1	1	
CO5				1								1			
					1: Lov	w, 2-M	ledium	n, 3- Hi	gh						

	NAI	RAYAN	A ENGIN	EERING	COLLEG	E: NELL	ORE	
			MET	ALLUR	GY			R2020
Semester	Но	ours / We		Total	Credit		Max Ma	rks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	100
 To expl. To class To expl. To under To make shear load 		steels ar es of frac tructure Ferent me	d selection cture and fa and proper thods of te	n of tool s atigue frac ties of pol esting mate	teels ctures lymers erials unde	r tension, o	-	on and 1 be able to:
CO 1			constitution with other	•	and purpos TL-2)	e of alloyi	ng, effect	of
CO 2	Classify th (BTL-2)	ne tool st	eels and ex	xplain the	method of	heat treatr	nent of too	l steels
CO 3	Explain tl	ne modes	of fractur	e and fatig	gue fracture	es Identify	(BTL-2)	
							· · · ·	
CO 4	Define ab	out polyr	ners and ty	pes of pol	lymers (B	TL-1)		

					C	O-PO	M	apping						
СО						P	0						PS	50
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	C	8	9	10	11	12	1	2
							7							
CO1	3	3										3	3	
CO2	3	3										3	3	
CO3	3	3										3	3	
CO4	3	3										3	3	
CO5	3	3										3	3	
]	l: Lov	v, 2-M	[edi	um, 3- I	ligh					

	NARAYANA ENGINEERING COLLEGE:NELLORE MODERN MANUFACTURING METHODS R2020												
		МС	DDERN MAI	NUFACTUR	ING METHO	DDS		R2020					
Semester	Н	ours / We	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
OE	3	0	0	48	3	40	60	100					
Pre-Requ	isite: Bas	sics on co	nventional	l manufac	turing pro	cesses							
Course Obje	ectives:												
Pro 2. Des 3. Exp mac 4. Des 5. Exp	cesses (BL2 cribe the El plain Chem chine differ cribe vario	2). ectrical En ical and E ent materia us Therma asonic an	of unconv ergy Based lectro Cher ils (BL2) l Energy Ba d Abrasive	Processes nical Energ	for machini gy Based P ses for mac	ng differen rocesses an hining appl	t materials nd their su ications (B	(BL2) itability to L2).					
Course Ou			ssful comp	letion of th	ne course, t	he student	will be abl	e to:					
CO 1	Understan	d the adva	ntages and l	imitations	of unconver	ntional mac	hining proc	esses					
CO 2	Understan	d the Elect	rical energy	based pro	cesses and i	ts limitatio	ns						
CO 3	Students c	an underst	and the use	of electro o	chemical en	ergy proces	ss and their	applications					
CO 4	Analyse th	ne thermal	energy base	ed process a	nd their lin	nitations							
CO 5	Understan process.	d the appli	cations and	limitations	of ultrason	ic and Abra	asive jet ma	chining					

					C	CO-PC) Map	ping						
CO						Р	0						PS	50
	PO	PO	PO	PSO	PSO									
	1	2	12	1	2									
CO1	2	3	2	-	-	3	-	-	-	-	-	-	-	-
CO2	2	3	1	-	1	2	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	3	-	-	-	-	-	-	1	-
CO4	1	3	-	-	3	2	-	-	-	-	-	-	-	-
CO5	2	3	-	-	2	3	-	-	-	-	-	-	1	-
	•	•	•		1: Lov	w, 2-M	ledium	n, 3- Hi	igh	•	•	•		

	NAR	AYANA	ENGINE	ERING	COLLEG	E:NELL	ORE	
			NANO N	IATERI	ALS			R2020
Semes	Hou	rs / Wee	ek	Total	Credit		Max Ma	rks
ter	L	T	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
1. T 2. T 3. T 4. T 5. T	o Understan o Gain know o emphasis o Highlights naterials. o know the	nd the p wledge a on the s of the applica	about the physics virtual w tion base	e Nanom of Nanom vay of un ed appro	naterials a materials nderstand bach.	and the in deta ling the	ir proper il . courses	ties,
	t will be ab		success	siul con	npletion (oi the c	ourse, ti	16
CO 1	Find the s	cope of	nano sci	ience an	d technol	logy (BT	`L-4)	
CO 2	Design th deposition			proach d	different	types o	f electro	chemical
CO 3	Understar	nd Diffr	action te	chnique	e, spectro	scopy te	echnique	s (BTL-2)
CO 4	Study the	nroner	ties of sy	nthesis	of nano 1	naterial	s (BTL-1)
		proper	$\cos \sigma \sigma_{j}$	11010010	or mano i	inacci ia)

						C	0-PC) Ma	ppir	ıg				
							PO						PS	60
СО	PO	PO	PO	PO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3				2									
CO2	3			2										
CO3	3			2										
CO4	3			1	2									
CO5	3				2									
					1:	Low	, 2-N	Iediu	im, 3	B- Hig	gh	-		

	COURSE CONTENT	
MODULE - I	INTRODUCTION	10 Hrs

Semester			NAKA	YAN	A ENO	GINE	ERING	COL	LEGI	E:NEI	LOR	E		
Semester				P	OWE	R PLA	ANT E	NGIN	EERI	NG			R20	22
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		H	ours / '	Week	Т	`otal	Crec	lit			Ma	ax Mar	ks	
	L		Т	Р		hrs	С		CIE	S	SEE		Т	OTAL
IV	3		0	0		48	3		40		60		100)
Course Ot . To under . To learn	rstand	the so					-					mental	aspect	S.
. To under												& Gas	turbine	s.
4. To acqui														
lant.		· ·	-		U 1	1			5			5		I
5. To acqui	ire kno	owled	ge on	renew	able e	nergy	source	es, wo	orking	princi	ple ar	d type	es of nu	clear
ower plant			-						-	•	•	J 1		
*						C								
													be able	to:
CO1				the so	ources of	of ener	gy, pov	ver pl	ant ecc	onomic	s and	enviror	nmental	
000		<u>ets. (Bl</u>									(D. 1	•		
CO2	-					<u> </u>	nts of di							
(())													bines.(B	BL-2)
CO3					0100	ayout,	- aux111a							1
CO4	2)			01		•		•			•		power	•
	2) Interj	pret the	e renev	vable e	energy	source	es, work	king p	rincipl		•		power ear pov	•
CO4	2) Interj	pret the	e renev	vable e	energy lvantag	source ges and	es, work 1 hazaro	king p ds.(BI	rincipl		•		^	•
CO4 CO5	2) Interj	pret the	e renev	vable e	energy lvantag	source ges and	es, work l hazaro Mapp	king p ds.(BI	rincipl		•		ear pov	ver plai
CO4	2) Interj work	pret the	e renev nciple	vable of and ad	energy lvanta	source ges and CO-PO P	es, work l hazaro Mapp O	king p ds.(BI ing	rincipl L-2)	e and t	ypes o	f nucle	ear pov	ver plan
CO4 CO5	2) Interj work	pret the ing pri	e renev nciple	vable of and ad	energy lvantag	source ges and CO-PO PO PO	es, work d hazard Mapp O PO	king p ds.(BI ing PO	rincipl L-2)	e and t	ypes o	f nucle	ear pov PSO	ver plan
CO4 CO5 CO	2) Interj work	pret the	e renev nciple	vable of and ad	energy lvanta	source ges and CO-PO P	es, work l hazaro Mapp O	king p ds.(BI ing	rincipl L-2)	e and t	ypes o	f nucle	ear pow PSO 1	ver plan
CO4 CO5 CO CO1	2) Interj work PO 1 1	PO PO 2 -	e renev nciple	vable of and ad point of a second sec	energy lvantag PO 5	source ges and CO-PO PO 6	es, work d hazard Mapp O PO 7	king p ds.(BI ing PO 8	rincipl L-2)	e and t	ypes o	f nucle PO 12 -	ear pov PSO	so PSO 2 1
CO4 CO5 CO CO1 CO2	2) Interj work PO 1 1 1	PO 2 1	e renev nciple PO 3 - -	vable of and ad PO 4 - 2	energy Ivantaş PO 5 - -	source ges and CO-PO PO 6 -	es, work d hazard Mapp O PO 7 -	king p ds.(BI ing PO 8	rincipl L-2)	e and t	ypes o	f nucle PO 12 - 1	ear pow PSO 1	ver plan
CO4 CO5 CO CO1 CO2 CO3	2) Interj work PO 1 1 1 1	PO 2 - 1 1	e renev nciple	PO 4 - 2 2	energy lvantag PO 5 -	source ges and CO-PO PO 6 -	es, work d hazard Mapp O PO 7 -	king p ds.(BI ing PO 8	rincipl L-2)	e and t	ypes o	f nucle PO 12 - 1 -	ear pow PSO 1 2 -	ver plan SO PSO 2 1 1 -
CO4 CO5 CO CO1 CO2	2) Interj work PO 1 1 1	PO 2 1	PO 3 -	vable of and ad PO 4 - 2	energy Ivantaş PO 5 - -	source ges and CO-PO PO 6 -	es, work d hazard Mapp O PO 7 -	king p ds.(BI ing PO 8	rincipl L-2)	e and t	ypes o	f nucle PO 12 - 1	ear pow PSO 1	ver plan

MODULE - 1

INTRODUCTION

10 Hours

Introduction to the Sources Of Energy - Resources and Development of Power in India. Conventional and non- conventional energy sources, Power Plant Economics and Environmental Considerations: Capital Cost, Investment of Fixed Charges, Operating Costs, General Arrangement of Power Distribution, Load Curves, Load Duration Curve. Definitions of Connected Load, Maximum Demand, Demand Factor, Average Load, Load Factor, Diversity Factor - Tariff - Related Exercises. Effluents from Power Plants and Impact on Environment - Pollutants and Pollution Standards - Methods of Pollution Control. Inspection And Safety Regulations.

At the end of the Module 1, students will be able to:

1. Acquire knowledge about various sources of energy.

2. Learn about the various costs associated with power plant.

3. Understand the various environmental aspects of power plants.

MODULE -2	STEAM POWER PLANT	10 Hours

		Prod	uct Desig	n and D	evelopm	ent		R2020
Semester	Н	ours / We		Total	Credit		Max Mar	ŕks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
1. To und	Objectives: derstand the	e basic sti			•		opment Pr	ocess and
2. To d	evelop abil e in line with	ity for a	nalyzing th	ne life cy	•		Justify pl	hysical
	utcomes: Af							
Course Ou	Interpret	basic stru	sful compl ucture of Pr Developme	oduct Des	sign , Prod			
	Interpret Scope of	basic stru Product E the techn	ucture of Pr Developmen niques of Pr	roduct Des nt. (BTL-2)	sign , Prodi	uct Develo	pment Prc	
CO 1	Interpret Scope of Illustrate Experime Apply the	basic stru Product E the techn ntation. (e knowled	ucture of Pr Developmen niques of Pr	oduct Des nt. (BTL-2) oduct Fun	sign , Prod) Iction, Proc g, Establisl	uct Develo luct Teard ning Engin	pment Prc own And	
CO 1 CO 2	Interpret Scope of Illustrate Experime Apply the Specificat	basic stru Product E the techn ntation. (e knowled ions and e knowled	ucture of Pr Developmen Niques of Pr BTL-1) dge of Ben	roduct Des nt. (BTL-2) roduct Fun ichmarking chitecture	sign , Produ ction, Prod g, Establish in product , Directed	uct Develo Juct Teard hing Engin (BTL-3) Search, Mu	pment Pro own And eering orphologic	ocess and

					(CO-PO	Map	ping								
СО							0						PS	60		
	РО															
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1													2		
CO2		1										1		1		
CO3				2												
CO4	2	1											2	1		
CO5				2								2				
CO6	1															
	•		•	•	1: Lov	w, 2-M	ledium	n, 3- Hi	gh		•					

COURSE CONTENT

	NARAYANA ENGINEERING COLLEGE:NELLORE PRODUCTION AND OPERATIONS MANAGEMENT R2020														
	PRO	DUCTIO	N AND O	PERATIC	NS MAN	AGEMEN	NT	R2020							
Semester	He	ours / Wee	ek	Total	Credit		Max Mar	ks							
	L	Т	Р	hrs	C	CIE	SEE	TOTAL							
OE	3	0	0	48	3	40	60	100							
1. 2. 3. 4. 5.	bjectives: To Underst systems. To Acquire To Underst To Gain kn To Determ tcomes: Aft	the know the know and the ir owledge the the ex	vledge of f nportance of Aggrega act schedu	orecasting of value e ate Plannin lling which	g technique engineering g and MRP h will be fo	s g and plant pllowed in	layout production	1							
CO 1	Illustrate	<mark>the opera</mark>	<mark>tion mana</mark>	igement a	<mark>nd concep</mark>	<mark>t in produ</mark>	<mark>ct develop</mark>	<mark>ment</mark>							
CO 2	Explain for	ecasting to	echniques a	and erro <mark>rs</mark> i	in forecastii	<mark>าg</mark>									
CO 3	<mark>Summariz</mark>	e the valu	ue enginee	ering and I	olant layou	<mark>it</mark>									
CO 4	<mark>Determin</mark>	<mark>e various</mark>	<mark>aggregate</mark>	planning	<mark>and MRP</mark>										
CO 5	<mark>Explain th</mark>	<mark>e differer</mark>	<mark>nt types of</mark>	schedulir	l <mark>g</mark>										

					(CO-PO	Ma	pping						
СО						Р	0						PS	50
	РО	РО	РО	РО	РО	РО	Ρ	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	0 7	8	9	10	11	12	1	2
CO1	1		1	1			/				1	1	1	
CO2		1		1				1						1
CO3	1		1	1	1							1	1	
CO4	1		1	1	1								1	
CO5		2	1	1				1				1	1	
CO6	1		1		1								1	
	•		•	•	1: Lov	w, 2-M	ediu	m, 3- Hi	gh		•	•		

	NA	RAYAN	A ENGIN	EERING	COLLEC	E:NELL	ORE	
		REFRIC	GERATIO	N & AIR	CONDIT	IONING		R2020
Semester	H	ours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
 To define To under To learne To under 	Objectives: the basic of the stand Simple the stand Simple the stand Simple the stand the standard the standa	Refrigera ple Vapo ple Vapo basic of A	ur Refriger ur Absorpt Air conditio	ation Systion System ion System oning and p	em n processes o	on psychoi		rts.
Course O	utcomes: A	fter succe	ssful comp	letion of th	ne course, t	he student	will be abl	e to:
CO 1	Determin	e the COI	of Refrig	eration Sy	stem and H	Bell-Colem	an Cycle.	(BTL-3)
CO 2	Analyze t (BTL-4)	he vapou	r compress	ion cycle	and interp	ret the usa	ge of refrig	gerants
CO 3	1		g of vapou	1	2	. ,		
CO 4			nt types of					
CO 5	Identify v	arious typ	bes of air c	onditionin	g equipme	nt used.	BTL-3)	

					C	CO-PC) M	apping								
CO						Р	0						PS	50		
	PO															
	1	2	3	4	5	6	0	8	9	10	11	12	1	2		
							7									
CO1	3	1	2										3			
CO2	3		2				1						3			
CO3	3	1	2										3			
CO4	3	1	2										3			
CO5	3	1	2										3			
					1: Lo	w, 2-M	ledi	um, 3- H	igh							

	NA	RAYANA	A ENGIN	EERING	COLLEG	E:NELL	ORE		
		Basi	cs of Me	chanical H	Engineerin	g		R2020	
Semester	Н	ours / Wee		Total	Credit		Max Mar	ks	
	L								
OE	3	0	0	48	3	40	60	100	
Pre-Requ			natics and	l Physical	Science.				
Course O	bjectives:								
1. To study	working o	of differen	t power pl	lants					
2. To under	rstand abo	ut concept	s of pump	s and turb	ines.				
3. To learn	about wor	king of IC	C Engines.						
4. To study	about cor	cepts of d	ifferent ty	pes of Boi	lers.				
5 To under	rstand con	cepts of R	efrigeratio	on and Air	conditioni	ng.			
Course Out	comes: Aft	er success	ful compl	etion of th	e course, t	he student	t will be abl	e to:	
CO 1	Learn abo	out Proper	ties of gas	ses and ste	eam. (BTL-:	1)			
CO 2	Understa	nd about	working of	f different	power pla	nts. (BTL-2	2)		
CO 3	Understa	nd concep	ots of pum	ps and tur	bines. (BT	L-2)			
CO 4	Learn abo	out the cor	cepts of I	C Engines	. (BTL-1)				
CO 5	Learn abo	out concep	ots of diffe	rent types	of Boilers	. (BTL-1)			
CO 6	Understa	nd various	s refrigerat	tion syster	ns. (BTL-2)			

					(CO-PO	M	apping						
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	Ρ	РО	РО	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1												2	1
CO2		1		2								1		1
CO3														
CO4	1	1											1	1
CO5			2									1		
CO6	1													
					1: Lov	w, 2-N	ledi	um, 3- Hi	gh					

	COURSE CONTENT	
MODULE – 1	Properties of Steam	8 Hours

			AUTO	MOBILE ENG	INEERING			R2020	
Semester	ŀ	Iours / Wee	k	Total hrs	Credit	Ν	/lax Mark	 .s	
	L	Т	Р	-	С	CIE	SEE	TOTAL	
OE	3	0	0	48	3	40	60	100	
			Ĩ	onents of auton of transmissio					
	4.To Imp	art knowled	ge on susp	ng mechanism. Dension system Dencepts and met		itomobile pol	lution and	l control.	

	Course Outcomes: After successful completion of the course, the student will be able
to:	
CO 1	Demonstrate the knowledge on working of various components of an automobile.[BT-2]
CO 2	Identify and analyze the various systems and sub systems suitable for an automobile.[BT-2]
CO 3	Explain the probable solution in the design of steering systems[BT-3]
CO 4	Analyze the complex issues in suspension and braking system.[BT-4]
CO 5	Apply the techniques to estimate pollution from the emissions of automobiles. [BT-3]
CO 6	Identify the components present in an Automotive electrical system.[BT-2]

CO						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1				2	3	2	3	3	2	2	2	2
CO2	3	2	2		2	2	2		3	1	2	1	2	1
CO3	1	3	1	3					1	2			1	1
CO4	3	1			1								1	1
CO5	1	1		1	3					2	1	1	2	1
CO6	1	1		3		3	1	2				1	3	1
					1: Lo	w, 2-M	ledium	, 3- Hi	igh					
					CC	DURSE	E CON	TENT						
MODU	LE – 1]	Basics	of an	Auton	nobile					8h
Classification of automobiles, Components of a four wheeler automobile, Chassis and body, Power unit,														
Rear wheel drive, Front wheel drive, Four wheel drive, Engine construction, Types of automobile														

		NA	RAYANA	ENGINE	ERING CO	LLEGE:	NELLOF	RE			
				ROBO	TICS			R2020			
Semester	Но	urs / We	ek	Total	Credit			Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
OE	3	0	0	48	3	40	60	100			
Pre-requis	site: Basi	e: Basic knowledge of CAD/CAM,CNC Machines.									
Course Ob	Course Objectives:										
			•			nd othe	er basic	information on robotics			
				d in robot							
		t prograr	nming of	f a typical	robot as a	lso the	concept	s of path planning and			
	cations.		f Dahatia		ion of robo	t ovin sin					
		•			amming me		bies of re	obot drives and			
Course Ou							to:				
CO 1								in today and future			
	and rob	ot config	uration a	nd subsys	tems (BL-2)					
CO 2	Explain	the work	ing of ro	bot access	sories such	as sens	ors,grip	pers.(BL-3)			
CO 3	Explain robot(BL	•	rogramm	ing langu	ages whic	h may	adopt	in different applications of			
CO 4	understa	and the a	pplicatio	ns of vario	us types of	end eff	ectors, a	and sensor devices(BL-2)			
CO 5	Apply th	ne Desigr	n and im	olementat	ion progra	mming c	of robot	systems (BL-3)			
CO 6		use the techniques, skills, and modern engineering tools necessary for engineering practice. (BL-2)									

					C	0-PO	Map	ping						
СО		_		-	_	Ρ	0	_				_	PS	50
	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	РО 9	РО 10	Р О 11	PO 12	PSO 1	PSO 2
CO1	1	2										2	2	
CO2	2	2	2										2	
CO3	2	3											2	
CO4	2	2										1	2	
CO5	3	2	2										2	
CO6	2	2		2									2	
					1: Lov	v, 2-M	edium	і, 3- Н	igh					

COURSE CONTENT											
MODULE – 1	MODULE - 1INTRODUCTION08 Hours										
systems, robot joints, degre articulated, SCARA, work vo stroke, speed of motion, spee At the end of the Module 1, s 1. Understand the other areas(BL-2	manufacturing, maintenance, research of nuc)	rtesian, cylindrical, spherical, g capacity (pay load), reach, on and Accuracy.									
2. Understand the	degrees of freedom.(BL-2)	2. Understand the degrees of freedom.(BL-2)									

	NA	RAYAN	A ENGIN	EERING	COLLEG	E:NELL	ORE	
				ering Mat				R2020
Semester	Но	ours / We	ek	Total	Credit		Max Mar	rks
	L	Т	Р	hrs	С	CIE SEE		TOTAL
	3	0	0	48	3	40	60	100
	isite: No I	Pre requi	isite is requ	uired.				
Course O	bjectives:							
1. To stud	y structure o	of metals	and types	of solids.				
2. To unde	erstand abou	t equilib	rium diagra	ams and p	properties o	f steel and	l iron.	
	n about heat	-	-	1	1			
				C		•,	. • 1	
4. 10 stud	y about prop	perties ar	a structure	es of cerar	nic & Com	posite ma	terials.	
Course Ou	tcomes: Aft	er succes	sful compl	etion of th	ne course, t	he studen	t will be ab	le to:
CO 1	Learn abo	ut honds	crystalliza	ation of m	etals and c	letermina	tion of gra	in sizes of
			•		lloys. (BT-1			11 51265 61
CO 2		-			ilibrium dia		nd to study	about
	phase diag			•		-		
CO 3	Understar	nd prope	rties and st	ructures	of various f	errous an	d non-ferr	ous metals
	and alloys	. (BT-2)						
CO 4	Know and	apply th	e concepts	of heat tr	eatment of	alloys. (B	BT-3)	
CO 5	Learn abo	ut comm	on crystal	structure	of metals.	(BT-1)		
CO 6	Learn abo	ut variou	is composi	te materia	als. (BT-1)			

					(CO-PO	Ma	apping						
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	Ρ	РО	РО	РО	PO	РО	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1	2											1	1
CO2				1								1		2
CO3													1	1
CO4	1		2		1									
CO5												2		
CO6													1	
	1	1	1	1	1: Lov	w, 2-N	ledi	um, 3- Hi	gh	1	1	1		1

	COURSE CONTENT	
MODULE – 1	Structure of Metals	8 Hours
phase rule, Study of Eutectic,		d monotectic reactions. Lever
cast nons. types, properties and a	ppications.	
t the end of the Module 1, stud	ants will be able to:	
	out various bonds in solids.	
1 0	determination of grain sizes.	
U	ts of constitution of alloys.	
5. understand the concep	is of constitution of anoys.	
MODULE -2	Equilibrium of Diagrams	8 Hours
systems, equilibrium coolin eutectic systems, congr Transformations in the solin relationship between equili	construction of equilibrium diag ng and heating of alloys, Lever ru uent melting intermediate ph d state – allotropy, eutectoid, perit ibrium diagrams and properties of u-Ni-, Al-Cu, Bi-Cd, Cu-An, Cu-Su	ale, coring miscibility gaps, ases, peritectic reaction. ectoid reactions, phase rule, alloys. Study of important
At the end of the Module 2, stud 7. Learn about construction 8. Understand eutectic and 9. Learn about phase rule a	of equilibrium diagrams.	se diagrams.

Pre-requisite: Basic Concept of Statistics and Fundamental Knowledge of Mathematics; Principles of Management; Understanding of different functional areas of management

Course Objectives:

1. To provide students an insight into the concept of quality, cost of quality, international quality standards.

2.To learn the principles of Total quality management, techniques for problem solving.

3.To learn about various tools of quality management used in various industrial applications.

4. To familiarize the students with principles of Quality Function Development (QFD)

5. To Impart knowledge on ISO 9000:2000 Quality System

Course Outcomes : After successful completion of the course, the student will be able to:		
CO 1	Understanding the concepts and principles of TQM.[BT-2]	
CO 2	Analyze various quality problems and contribute towards continuous improvement in the system .[BT-3]	
CO 3	formulate quality circles to find solutions to problems in industry.[BT-6	
CO 4	use Quality Function Development (QFD) technique in manufacturing and service sectors.[BT-3]	
CO 5	Identify the Need of ISO 9000:2000 Quality System and its Elements .[BT-3]	
CO 6	apply six sigma approach to various industrial situations.[BT-3]	

COURSE CONTENT			
MODULE – 1	Basic concepts of Total Quality Management	8h	
Quality Costs, Basic	, Dimensions of Quality, Quality Planning, Quality costs - Analysis Te concepts of Total Quality Management, Principles of TQM, Barri ality standards – Need of standardization - Institutions – bodies of stan 14000 series	ers to TQM	
 understand the di Identify suitable 	odule 1, students will be able to: fferent phases involved in Total Quality Management.[BT-2] Barriers to implement Total Quality Management . [BT-3] and applications of Total Quality Management.[BT-2]		
MODULE -2	Quality measurement systems	8h	
nonconformance dat	t- Quality measurement systems (QMS) – developing and implement abase- TQM tools & techniques- 7 QC tools- 7 New QC tools. n - Customer Perception of Quality, Customer Complaints, Service Quali	-	