DEPARTMENT OF ELECTRICAL AND ELETRONICS ENGINEERING

NECR-21

ALGEBRA AND CALCULUS (21MA1001) **Course Objectives:** 1. To familiarize the students with the theory of matrices and quadratic forms. 2. To analyze second order ordinary differential equations. 3. To explain the series expansions using mean value theorems and the concepts of multivariable calculus. 4. To summarize the procedure to solve the partial differential equations. 5. To explain the student with mathematical tools needed in evaluating multiple integrals and its applications. Course Outcomes: After successful completion of the course, the student will be able to: Make use the concepts of Matrices to solve various Engineering problems. CO 1 (BL-3) **Identify** different types of higher order differential equations and their applications in **CO 2** solving engineering problems. (BL-3) Apply Mean value theorems, Multi variable calculus to solve engineering problems. (BL-3) CO 3 Apply a range of techniques for solutions of first order Linear and non-Linear Partial **CO 4 Differential Equations (PDE).** (BL-3) Apply the techniques of multiple integrals for the area and volume of the region bounded CO 5 by curves. (BL-3)

	CO-PO Mapping													
		P	SO											
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C01	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	CO5 3 3 .													
					1.	Low 2-	Medium	3- High						

		IED PHYSICS (21PH1001)	
Co	urse Ol	bjectives:	
1.	To unc	lerstand optical phenomenon i.e. interference and diffraction related to their engine	eering
	applica	tions.	e
2.	To exp	lain the concepts and difference between classical free electron theory and quantum th	eory.
3.	To imp	part knowledge in basic concepts of free electron theory of metals and semiconductors.	
4.	To illu	astrate the concepts of superconductor and nanomaterials in functioning of elec	tronic
	devices	δ.	
5.	To fam	iliarize the types of laser/optical fibres and their applications in communication engine	eering
	devices	3	
Co	urse Ou	tcomes: After successful completion of the course, the student will be able to:	BTL
CC) 1	Explain the concepts of interference, diffraction using Huygen's wave theory	2
CC) 2	Comprehend the concepts of matter waves, wave functions and their interpretation	1
		for understanding the matter at atomic scale	
CC) 3	Summarize the importance of free electron theories in determining the properties of	1
		metals and semiconductors	
CC) 4	Understand the concepts of superconductor and nanomaterials to familarize their	2
		applications in relevant fields	
CO	5	Realize the importance of the lasers and optical fibres in engineering and medical	2
		applications	

CO-PO Mapping															
CO				PSO											
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	<u>1 2 3 4 5 6 7 8 9 10 11 12 1 2</u>														
CO1	CO1 3 2														
CO2	3	2													
CO3	3	2											1		
CO4	3					1							1		
CO5	CO5 3 1 1 1 1														
	1: Low, 2-Medium, 3- High														

BASIC ELECTRICAL CIRCUITS (21ES1003)														
Course O	Course Objectives: 1. To study the basics of circuit analysis.													
1.	To s	tudy tl	he bas	ics of	circuit	t analy	/sis.							
2.	To s	tudy tl	he ma	gnetic	circui	ts.								
3.	The	conce	pts of	real p	ower,	reacti	ve pov	wer, c	omple	x pow	er, ph	ase an	gle and	b
	phas	e diffe	erence	•										
4.	To u	nderst	tand fi	equer	cy res	ponse	in ele	ctrica	l circu	its.				
5.	To u	nderst	tand tł	ne con	cept o	f grap	hicals	solutic	on to e	lectric	al net	work.		
6.	To ii	mpart	know	ledge	on sol	ving c	ircuit	equati	ions us	sing n	etworl	theor	ems.	
Course O	utcor	Itcomes : After successful completion of the course, the student will be able to:												
CO1	Solv	Solve various electrical networks in presence of active and passive elements.(BL-												
	3)	3)												
CO 2	Und	Understand the fundamental behaviour of AC circuits and solve AC circuit												
	prob	problems.(BL-2)												
CO 3	Exp	Explain the behaviour of the circuit at series & parallel resonance of circuit & the												
	effe	effect of resonance .(BL-2)												
CO 4	App	ly gra	ph the	ory to	form	ılate n	etwor	k equa	ations.	(BL-3	5)			
CO 5	Solv	e elec	trical	netwo	rks by	using	, princ	iples o	of netv	vork tl	neorer	n.(BL	-3)	
					C	O-PO	Map	ping						
СО						P	0						PS	30
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
COL	3	3										3	3	1
CO2	3	3	3										2	
CO3	3	3	3										3	3
CO4	3	3	3										2	3
CO5	3	3	2											
					l: Lov	v, 2-M	lediun	n, 3- H	ligh					

PROBLEM SOLVING AND PROGRAMMING

Course Objectives:

- 1. To understand various steps in Program development.
- 2. To understand the basic concepts in C Programming Language.
- 3. To learn how to write modular and readable C Programs.
- 4. To learn the syntax and semantics of a C Programming language.
- 5. To learn structured programming approach for problem solving.

Course Outcomes: After successful completion of the course, Student will be able to:

CO 1	Identify methods to solve a problem through computer programming. (BL - 3)
CO 2	Understand the use of basic elements of C language. (BL - 2)
CO 3	Understand the usage of various control statements and the modular approach
	for solving the problems. (BL - 2)
CO 4	Apply the Arrays and Pointers for solving problems. (BL - 3)
CO 5	Explain User-Defined Data Types and Files. (BL - 2)

	CO-PO Mapping														
						P	0						PSO		
СО	PO 1	PO 2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	
CO1	3	3											1		
CO2	1	2	1										1		
CO3	1	2	3	2	2							2	2	2	
CO4	3	3	2	2								1	2		
CO5	2	2	2	2								1	2		
					1: Lo	w, 2-N	Mediu	m, 3-1	High						

Applied Physics lab (21PH1501)														
Course Objectives:														
1.	То	provid	e stud	ent to	learn a	about	some	import	ant ex	perime	ental te	chniqu	ues in pl	nysics
	with	knowl	edge i	n theo	retical	aspec	ts so t	hat the	ey can	excel	in that	t partic	cular fiel	ld. To
	prepare students for performing requirement analysis and design of variety of applications													
	applications.													
2.	2. To enable the students to understand the concepts of interference and diffraction and their applications													
	their applications. 3 To educate students to recognize the applications of laser in finding the wavelength slit													
3.	3. To educate students to recognize the applications of laser in finding the wavelength, slit width and its role in diffraction studies													
width and its role in diffraction studies														
4. To make the students to understand the important parameters of optical fibres and metals														
Course Outcomes: After successful completion of the course, the student will be able to:														
CO 1 learn important concepts of physics through involvement in the experiments by applying														
	theoretical knowledge.													
CO 2	understand the concepts of interference and diffraction and their applications.													
CO 3	recog	gnize t	he app	olicatio	ns of l	aser ir	n findi	ng the	wave	length	, slit v	vidth	and its r	ole in
	diffr	action	studies	5										
CO 4	unde	rstand	the in	nportai	nt para	meters	ofop	tical fi	bres ar	nd meta	als			
					(CO-PO	Map	oing						
со						Р	0						PS	0
	PO	PO	РО	PO	PO	РО	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1												
CO2	2	1												
<u>CO3</u>	2	1				1								
CO4	2	1				1		<u> </u>						
					1: LO	w, 2-M	ledium	1, 3- Hi	gn					

BASIC ELECTRICAL CIRCUIT LAB (21ES1506)

Course Objectives:

1. Fundamentals of Ohm's law, Kirchhoff's current and voltage laws and its practical implementation.

2. Measurement of voltage, current, power and impedance of any circuit.

3. Analysis of a given circuit depending on types of elements.

Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Apply the KCL and KVL for circuit analysis and verify the results theoretically (BL= 3)
CO 2	Experimentally determine self inductance, mutual inductance and coefficient of coupling.(BL=3)
CO 3	Practically determine band width, Q-factor and verify with theoretical values. (BL=3)
CO 4	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and leading networks.(BL-2)
CO 5	Apply suitable theorems for the given Electrical circuit and verify with theoretical values.(BL=3)

	CO-PO Mapping														
СО	CO PO														
	PO	PO P													
	<u>1 2 3 4 5 6 7 8 9 10 11 12 1 2</u>														
CO1	CO1 2 2 2 1 1 2 1 2														
CO2	2	2	2	1	1		1	2		1		2	2	2	
CO3	2	2	2	1	1		1	2		1		2	2	2	
CO4	2	2	2	1	1		1	2		1		2	2	2	
CO5	2	2	1				1						2	3	
	1: Low, 2-Medium, 3- High														

	ENGINEERING & ITWORK SHOP (21ES1505)
Course	Objectives:
1.	To know basic workshop processes and adopt safety practices while working with
	various tools and equipments
2.	To identify, select and use various marking, measuring, holding, striking and cutting
	tools & equipments.
3.	To know about the internal parts of a computer, assembling a computer from the
	parts, preparing a computer for use by installing the operating system
4.	To gain knowledge about the usage of tools like Word processors, Spreadsheets,
	Presentations
5.	To learn about Networking of computers and use Internet facility for Browsing and
	Searching
Course	Outcomes : After successful completion of the course, the student will be able to:
CO1	Understand the safety aspects in using the tools and equipments.(BL-2)
CO2	Apply tools for making models in respective trades of engineering workshop.(BL-3)
CO3	Apply basic electrical engineering knowledge to makes imple housewiring circuits
	And check their functionality.(BL-3)
CO4	Understand to disassemble and assemble a Personal Computer and prepare the
	Computer ready to use(BL-2)
CO5	Apply knowledge to Interconnect two or more computers for information sharing
	(BL-3)

CO-PO Mapping															
	PO													30	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
CO	<u>1 2 3 4 5 6 7 8 9 10 11 12 1 2</u>														
CO1	2	2 3 1 3													
CO2	2				3								1	3	
CO3	2				3								1	3	
CO4	2				3								1	3	
CO5	2				3								1	3	
					1: Lov	v, 2-M	[ediun	1, 3- H	ligh						

PART-B IT WORKSHOP LAB															
Cours	e O	bjecti	ives:												
1.	То	provi	de Teo	chnica	l trair	ing of	n Proc	luctivi	ity toc	ols like	e Wor	d proc	essors	,	
	Spi	eadsh	eets, l	Preser	tation	IS.			-			-			
2.	To	make	the st	udent	s knov	v abou	ut the	intern	al par	ts of a	ı comp	outer,	asseml	bling,	
	installing the operating system.														
3. To teach connecting two or more computers.															
Cours	Course Outcomes: After successful completion of the course, the student will be able														
to:	o:														
CO 1		Understand functionalities of a computer and operating system. (BL-2)													
CO 2		Practice Word processors, Presentation and Spreadsheet tool. (BL-2)													
CO 3		Conn	nect co	mput	er usi	ng wir	ed an	d wire	eless c	onnec	tions.		(1	BL-2)	
						C	O-PO) Map	ping						
-							P	0						PS	SO
~ ~		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO		1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO 1	1														
CO2	D2 1														
CO	CO3 1														
					1	: Low	v, 2-M	[ediun	n, 3- F	Iigh					

Problem Solving and Programming Lab (21ES1501)

Course Objectives:

- 1. To work with the compound data types
- 2. To explore dynamic memory allocation concepts
- 3. To design the flowchart and algorithm for real world problems
- 4. To write C programs for real world problems using simple and compound data types
- 5. To employee good programming style, standards and practices during program development

Course Outcomes: After successful completion of the course, Student will be able to:

- **CO 1** Translate algorithms into programs (In C language) (BL 2)
- **CO 2** Code and debug programs in C program language using various constructs.(BL 3)
- **CO 3** Solve the problems and implement algorithms in C. (BL 3)
- **CO 4** Make use of different data types to handle the real time data (BL 3)

CO-PO Mapping															
	РО														
	PO1	PO2	PO	PSO1	PSO 2										
СО			3	4	5	6	7	8	9	10	11	12			
CO1	1	2											1		
CO2	2	2	2										2	1	
CO3	2	2	3	1	2								2	2	
CO4	2	2	3	1	1								2	2	
	1: Low, 2-Medium, 3- High														

	Communication skills Lab (21EN1502)													
I-B.T	ech								R2021					
Semest	er	H	ours / Wee	ek	Total	Credit	Max Marks							
		L	Т	Р	hrs	С	CIE	SEE	TOTAL					
Ι		0	0	2	36	1	40	60	100					
Pre-re	quis	ite: Engl	lish											
Cours	e Ou	tcomes:	After suc	cessful c	ompletior	n of the co	ourse, Stud	dent will	be able to:					
CO 1	To	develop l	knowledg	e, skills,	and judgı	ment arou	nd human	communi	cation					
	that	t facilitate	s their ab	ility to wo	ork collabo	oratively v	vith others	5.						
CO 2	Dev	velop thei	ir public :	speaking	abilities	to speak b	oth formal	ly and inf	ormally.					
CO 3	Un	derstand	the nuan	ces of En	ıglish lanş	guage and	skills req	uired for o	effective					
	Par	ticipation	in group	activities.										

					С	O-PC) Maj	pping								
60		РО														
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1									2	3						
CO2									2	3						
CO3									2	3						
		<u> </u>	1	1	l: Lov	v, 2-N	lediu	n, 3-]	High	1		1	1			

CHEMISTRY (21CH1001)

Course Objectives:

- 1. To impart technological aspects of modern chemistry and its applications.
- 2. Understand the chemistry behind electrochemical energy systems.
- 3. To train the students on the principles and applications of polymers.
- 4. To acquire knowledge of engineering materials and fuels.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Understand the fundamental concepts of chemistry to predict the structure and bonding of materials.(BL-2)
CO 2	Discuss various kinds of electro chemical cells.(BL-3)
CO 3	Compare the materials of various energy storage devices and emerging technologies.(BL-3)
CO 4	Demonstrate the mechanism and applications of different polymers in electronic devices.(BL-3)
CO 5	Explain calorific values, refining of petroleum and cracking of oils.(BL-2)

CO-PO Mapping

			PS	50										
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	3	_		-			,	0	-	10				_
CO2	3													
CO3	3						3							
CO4	3						3							
CO5	3						3							
	1: Low, 2-Medium, 3- High													

VEC	TOR (CALC	ULUS	S CON	MPLE	EX VA	RIA	BLES	& TF	RANS	FORM	MS (2)	1MA10	03)
Course C) bjectiv	ves: Th	is cou	rse ain	is to pi	rovidir	ng the I	knowle	edge fo	or the s	tudent	about	on	
1. To	o enligh	ten the	learne	ers in th	he con	cept of	f vecto	r diffe	rentiati	on and	l integ	ration.		
2. To	o unders	stand tl	ne con	cept th	e limit	, conti	nuity &	& diffe	rentiat	ion of	comple	ex vari	able	
3. To	o Evalua	ate the	impro	per int	egrals	by cor	nplex i	integra	tion					
4. To understand the concepts of Laplace transforms and Inverse Laplace transforms & its														
properties.														
5. To understand the concepts of Fourier series, Fourier transforms and its properties.														
Course C	<u>utcom</u>	es: Af	ter suc	cessfu	l com	pletior	1 of th	e cour	se, the	stude	nt will	able t	io:	
CO 1	CO1Interpret the different operators such as gradient, curl and divergence to find out point													
	funct	ion												
	(L-3)	1												
CO 2	Unde	rstand	the co	ncept t	he lim	it, con	tinuity	& dif	ferentia	ation o	f comp	olex va	riable	(L-3)
CO 3	Evalı	ate the	e integ	ral by 1	using c	contou	r integ	ration						.(L-5)
CO 4	Appl	y the L	aplace	transf	orm to	conve	ert time	e doma	in into	frequ	ency d	omain	& Inver	se Laplac
	transt	forms t	echnic	ues to	solve	the dif	ferenti	al equ	ations.					(L-3)
CO 5	Deve	lop the	e Fouri	er Seri	es to tl	he give	en peri	odic fi	inction	S				(L-3)
					(CO-PO) Maj	oping						
						PO)	1 0					P	SO
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												
					1-	- Low, 2-	Medium	3- High						

https://youtu.be/VzGnb2K4RGQ

PYTHON PROGRAMMING AND DATA SCIENCE (21ES1005)														
Course	e Obje	ctives	5:											
1.	To lea	rn abo	out Py	ython	progr	ammi	ng la	nguag	ge syn	tax, s	emant	tics, a	nd the	runtime
	enviro	nment												
2.	To be	famil	iarize	d witl	h gen	eral c	ompu	ter pr	ogran	nming	conc	epts 1	ike con	ditional
	execut	ion, lo	ops &	z func	tions									
3.	To learn about mutable and immutable types.													
4.	To learn about the data science related functions in NUMPY.													
5.	To solve data science problems using PANDAS.													
Course	Outco	mes:	After	succe	essful	comp	oletio	n of t	he cou	urse, S	Studer	nt wil	l be abl	e to
CO 1	Demo	onstra	te var	ious (opera	tors,	data	types	and	decis	ion st	tructu	ires in	python.
	(BL -	3)												
CO 2	Solve	e probl	lems ι	using	Funct	ions a	and d	ata st	ructu	res in	Pytho	on (BI	L - 3)	
CO 3	Imple	ement	the co	oncept	t of Fi	les an	nd Mo	odules	s (BL	- 3)				
CO 4	Imple	ement	Data	Scien	ce que	eries u	ising I	NUM	PY m	odule	(BL -	3)		
CO 5	Solve	data	manip	oulatio	on task	t using	g PAI	NDAS	6 mod	ule (B	L - 3)			
					(CO-P	O Ma	appin	ıg					
						P	0						P	SO
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1											1	
CO2	2	2											2	
CO3														
CO4														
CO5	2	2											1	1
					1: Lo	w, 2-1	Mediu	um, 3-	- High					

ENGLISH (21EN1001)

Course Objectives :

- 1. To explore the students to develop knowledge and awareness of English sentence structure, construction and improvement.
- 2. To develop the students in getting the information of word power and able them to fit for the competition.
- 3. To enhance the ability of writing the structural English among the students.
- 4. To demonstrate the ability to write error free written communication.
- 5. To distinguish main ideas from specific details and make use of contextual clues to inform meanings of un familiar words.

•	
Course Outcomes	: After successful completion of the course, the student will able to:
CO 1	Acquirein-depth knowledge on formulating appropriate sentences with Grammatical accuracy and also develop concept of word formation(BL2)
CO 2	Use coherent and unified paragraphs with adequate support and detail and can write a topic sentence, support and concluding sentence. (BL2)
CO 3	Analyze the concepts of various real time scenarios to represent in an effective model. $(BL - 4)$
CO 4	Understand the grammar rules for synthesis of sentences and use pre writing strategies to plan to write dialogues, reviews and edit the text effectively. $(BL - 2)$
CO 5	Relate the skills and sub skills of reading effectively and provide knowledge on the structure and format of technical writing. $(BL - 2)$

CHEMISTRY LAB (COMMON TO CSE, ECE & EEE) (21CH1501)										
Course Objectives: The objective of the laboratory sessions is to enable the learners to get										
hands-on ex	xperience on the principles discussed in theory sessions and to understand the									
applications	of these concepts in engineering.									
Course Ou	utcomes: After successful completion of the course, the student will be able to:									
CO 1	Determine the cell constant and conductance of solutions									
CO 2	Perform quantitative analysis using instrumental methods									
CO 3	Utilize the fundamental laboratory techniques for analyses such as titrations, separation purification and Spectroscopy									
CO 4	Analyze and gain experimental skill.									

	CO-PO Mapping														
00						P	0						PS	50	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO1	3	3													
CO2	3														
CO3	3														
CO4	3														
	1: Low, 2-Medium, 3- High														

ENGINEERING GRAPHICS (21ES1503)

Course Objectives:

- 1. To impart skills on using drawing instruments
- 2. To convey exact and complete information of any physical object.
- 3. To Construct Engineering Curves.
- 4. To Learn and practice basic AutoCAD commands.
- 5. To Instruct the utility of drafting & modelling packages in orthographic and isometric drawings

Course Ou	Course Outcomes: At the end of the course, student will be able to:									
CO 1	Define the qualities of precision and accuracy in engineering drawing. (BL-1)									
CO 2	Draw engineering curves with different methods(BL-3).									
CO 3	Develop the orthographic projection of points and straight lines(BL-3)									
CO 4	Construct the planes and simple solids.(BL-3).									
CO 5	Understand and practice basic AUTOCAD commands (BL-2)									

			Pyt	thon	Progr	ammiı	ng and	l Data	Scien	ce Lab	(21ES	51508)			
Course	Obje	ctives:													
1. To	gain k	nowled	lge	on py	thon pi	ogram	basics	5							
2. T	o prep	are stu	den	ts for	buildin	g prog	grams	using	control	staten	nents				
3.	Т	o prepa	are	studen	ts for s	solving	g the p	roblem	ns invo	lving f	unctio	ns and	files.		
4.	Т	o gain	kr	nowled	lge Py	thon N	Jumpy	modu	ile to	solve	compl	ex mat	themat	ical pro	blems
involving matrices.															
5.	T	o gain	Kn	owled	ge of d	ata cle	aning	using	Pandas						
Course	Outc	omes:	Af	ter suc	cessfu	l com	pletio	n of tł	ne cour	rse, the	e stude	ent wil	l be ał	ole to:	
C01	J	Jnders	tan	ding a	and us	e of py	ython-	Basic	c Conc	cepts(]	BL -2))			
CO2	S	Solve t	he	proble	ems us	ing p	ython	Iterat	ive Sta	ateme	nts(BI	L -3)			
CO3	I	Jnders	tan	d the	concei	ots of	files. 1	modul	es(BI	(-2)		,			
CO4	5	Solve t	hel	Nume	rical 1	proble	me the	atinu		Intrice	e (RI	3)			
	Т					$\frac{1}{1}$				$\frac{1}{2}$.5 (DL	-3)			
05	1	rovide	e so	olution	is for o	lata ci	eanin	g task	s(BL-	3)					
						0	CO-PC) Map	ping						
							PO							PS	50
CO	PO	1 P	0	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
			2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		1	2										1	
CO2	2	2 3 2 2 2 2 1													
CO3	2	2 3 2 2 3 2 2 3 2													
CO4	2		2	2	1	1								3	2
						1-Lov	w, 2-M	ledium	i, <mark>3-</mark> Hi	gh					

	English Language Lab (21EN1501)
Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO1	Understand how speech sounds are used to create meaning. Apply their
	knowledge of English phonetics and phonology to improve their own
	pronunciation.
CO2	Recognize and use pitch patterns to signal complete and incomplete thought groups and Speak confidently and intelligibly within groups and before an audience.
CO3	Learn, practice and acquire the skills necessary to deliver effective, presentation with clarity and enable them to prepare resume with cover letter.

				C	O-PC) Ma	ppin	g						
CO					ł	20							Р	SO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1									2	3				
CO2									3	2				
CO3									3	3				
	1 1			1: Low	, 2-N	lediu	m, 3-	Hig	h				1	1

		PR	JBAB	LITY S	STATI	STIC	S ANI) NUN	1ERIC	CAL N	IETH	ODS		
Course C	Objec	tives:	This c	ourse a	ims to	provi	ding t	he kno	wledg	ge for	the stu	ident a	about of	n
1. T	he th	eory o	f Prob	ability I	Distrib	oution	s is us	ed to]	Deterr	nine tl	he exp	ected	values	and
a	nalysi	is the	lata.											
2. T	he St	atistic	al met	10ds us	ed to t	est the	e prod	uct un	der th	e spec	cificati	ons of	r not.	
3. T	'o sol	ving a	ı algeb	raic and	transc	endent	tal equ	ations	s by ar	polvin	g Vari	ous ni	ımerica	1
m	netho	ds.	0				1		J 1	1 2 4	0			
4 T	'o inte	ernola	ing th	e values	s throu	igh the	e nolv	nomia	ls.					
5. T	o eva	luatio	1 of in	tegral v	alues	throug	b the	nume	rical n	nethod	ls.			
6 T	o sol	ve ord	inary (lifferen	tial ea	uation	s thro	ugh th	ne niin	nerica	l meth	ods		
0. 1	0 501	ve ora	inary (mineren	uui eq	uutioi	15 1110	ugn u	ie nun	101100	i incen	ous.		
Course (Jutco	mes: /	After su	iccessfi	ıl com	pletion	n of th	e cour	se, the	stude	nt will	able t	0:	
CO 1	A	apply t	ne prob	ability o	listribu	itions i	n life t	testing	, expec	ted fai	ilures f	or vari	ous eng	ineering
	a	pplicat	ions.	2				U	1				U	(L-3)
CO 2	Т	est the	data b	y applyi	ng larg	ge sam	ples in	ferenti	al tech	niques	5.			(L-4)
CO 3	Т	est the	data b	y applyi	ng sma	all sam	ples in	ferent	ial tech	nique	s.			(L-4)
CO 4	S	olve al	gebraic	and tra	nscend	ental e	quatio	ns and	interp	olate t	he tren	d valu	e	(L-3)
CO 5	Т	o Solv	e ordin	arv diff	erentia	l equat	tions b	v using	2 nume	erical r	nethod	s		(L-3)
					(CO-P(O Mai	ning	5					(_ • •)
						PC)	- <u>r8</u>					P	SO
CO	PO	1 PC) PC	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3				2								
CO2	3	3	2			2								
CO3	3	3				2								
CO4	3	3	2											
CO5	3	3				2								
					1-	- Low, 2-	Medium	, 3- High						

https://youtu.be/VzGnb2K4RGQ

	DC MACHINES AND TRANSFORMERS (21EE2001)
Course	Objectives:
1.	To understand the constructional features of DC machines.
2.	To understand the phenomena of armature reaction and commutation.
3.	To understand the characteristics and parallel operation of dc machines.
4.	To understand the methods for speed control of DC motors and applications of DC
	motors.
5.	To understand the various types of losses that occurs in DC machines and how to
	calculate efficiency.
6.	To understand the constructional features of a single phase transformer.
7.	To understand the efficiency and voltage regulation of a transformer.
8.	To understand the Autotransformers Construction & Comparison with two winding
	transformer.
9.	To suggest a suitable three phase transformer connection for a particular operation.
10.	. To understand the tap changing of transformers.
Course	e Outcomes: After successful completion of the course, the student will be able to:
CO 1	Study construction, different phenomena like: armature reaction, commutation in
	DC machines.
CO 2	Understand about different types of dc generators and significance of OCC.
CO 3	Develop mathematical relations for torque developed by dc motor and learn about
	speed – torque characteristics of different types of DC motor. Gain knowledge of
	about different testing methods of dc machines.
CO 4	Identification of physical components of single phase transformer.
CO 5	Learn difference between two windings and auto transformers.
	Identification of three phase transformers circuits.

					(CO-PO	Mapp	oing						
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2		2				1	1	2	2	1
CO2	2	2	2	2		2				1	1	2	1	2
CO3	2	2	2	2		2				1	1	2	2	1
CO4	2	3	3	2		2				1	1	2	2	1
CO5	3	3	3	3		2				1	1	2	1	2
					1: Lo	w, 2-M	ledium	, 3- Hi	gh					

			E	lectri	cal Ci	ircuit	Analy	ysis (2	1EE2	002)				
Course Ob	ojectiv	ves:												
1. To know	the an	alysis	of thre	e phas	e bala	nced a	nd unb	alance	d circu	uits and	l to me	easure	active ar	nd
reactive po	wers in	three	phase	circuit	s.									
2. Knowin	g how	to dete	ermine	the tra	insient	respor	nse of]	R-L, R	-C, R-	L-C se	eries ci	rcuits	for D.C a	and
A.C excitat	ions.													
3. To introd	luce th	e vario	ous two	o-port	networ	ks par	ameter	s for a	given	circuit	t.			
4. To evalu	ation c	f pole	s and z	eros o	f a giv	en tran	sfer fu	nction						
5. To study	the di	fferent	types	of filte	ers									
Course Ou	utcom	es: Af	ter suc	cessfu	ıl com	npletio	n of th	ne cour	rse, the	e stude	ent wil	l be al	ole to:	
CO 1	Unde	erstan	d the a	nalysis	s of thr	ree pha	ase bal	anced	and ur	nbalan	ced cir	cuits.		
CO 2	Solve	e the p	roblen	ns in D	C tran	sient r	espons	se for t	he giv	en circ	uit.			
CO 3	Solv	e the p	roblen	ns in A	C tran	sient r	espons	e for t	he give	en circ	uit.			
CO 4	Anal	yze the	e giver	netwo	ork usi	ng diff	erent	two po	rt net	work p	arame	ters.		
CO 5	Expl	ain ab	out the	funda	mental	l and ty	pes of	filters						
					0	CO-PO) Map	ping						
CO						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2									3	3
CO2	3	3	3	2									3	3
CO3	3	3	3	2									3	2
CO4	3	3	3	2									1	2
CO5	2	2	3	2									2	1
					1: Lo	w, 2-N	ledium	n, 3- H	igh					

POWER SYSTEM ARCHITECTURE (21EE2003)

Course Objectives:

- 1. To understand the structure, essential components and their layout in non renewable generating stations.
- 2. To understand the electrical power generation from renewable energy sources as sun, wind and ocean.
- 3. To understand the calculation of different transmission line parameters and their use.
- 4. To understand the various effects in transmission line.
- 5. To understand the modeling of transmission line.

Course Outcomes: On successful completion of the course, student will be able to:

CO 1	Describe the working principle and operation of Nonrenewable generating stations. (BL-2)

CO 2 Discuss the working principle and operation of various Renewable energy sources. **(BL-2)**

- **CO 3** Analyze and compute the transmission line parameters. **(BL-4)**
- **CO 4** Estimate the performance of a given transmission line (**BL-5**)
- CO 5 Analyze the performance of transmission lines (BL-4)

						0	CO-PO N	lapping						
со							РО						PS	0
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2										2	2
CO2	2	3											3	2
CO3	3	2											3	2
CO4	2	3	1		1								1	3
CO5	3	3											1	1
				<u>.</u>		1: Lo	w, 2-Med	ium, 3- H	ligh					

Universal Human Values (21EN1002)

Course Objectives:

The objective of the course is four fold:

1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

3. Strengthening of self-reflection.
 4. Development of commitment and courage to act.

Course O	utcomes: On successful completion of the course, student will be able to:
CO 1	Students are expected to become more aware of themselves, and their surroundings (family, society,
COT	nature) (BL-2)
CO^{2}	They would become more responsible in life, and in handling problems with sustainable solutions,
02	while keeping human relationships and human nature in mind. (BL-2)
CO 3	They would have better critical ability. (BL-2)
CO 4	They would also become sensitive to their commitment towards what they have understood (human
04	values, human relationship and human society). (BL-2)
<u>CO 5</u>	It is hoped that they would be able to apply what they have learnt to their own self in different day-
05	to-day settings in real life, at least a beginning would be made in this direction. (BL-3)

						0	CO-PO N	lapping						
CO							РО						PS	0
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01								3	2	2				
CO2								3	2	2				
CO3								3	2	2				
CO4								3	2	2				
CO5								3	2	2				
						1: Lo	w, 2-Med	lium, 3- H	ligh					

slip
as
use
ing
of
SO
2
2
2
2
2
۷.

	ENGINEERING ELECTROMAGNETICS (21EE2006)
Course	Objectives:
1. To rev	iew the fundamentals of the different coordinate systems, vector algebra and calc
2. To tead	the basic laws of electromagnetism
3. To lean configura	n to compute and visualize the electrostatic and magnetostatic fields for simple tions
4. To ana	lyse the time varying electric and magnetic fields and to understand Maxwell's
5 To und	erstand the propagation of electromagnetic wayes through different media
5. To unc	erstand the propagation of electromagnetic waves through different media
5. To unc	erstand the propagation of electromagnetic waves through different media
5. To unc	erstand the propagation of electromagnetic waves through different media
5. To und	erstand the propagation of electromagnetic waves through different media
5. To und	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be able
5. To und Course CO 1	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa
5. To unc Course CO 1	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be able Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus
5. To unc Course CO 1	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics. Ability to compute, visualize
5. To unc Course CO 1 CO 2	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be able Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics, Ability to compute, visualize electrostatic fields along with practical applications
5. To unc Course CO 1 CO 2	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics, Ability to compute, visualize electrostatic fields along with practical applications
5. To unc Course CO 1 CO 2 CO 3	erstand the propagation of electromagnetic waves through different media Dutcomes: After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics, Ability to compute, visualize electrostatic fields along with practical applications Understanding of the basic laws of magnetostatics
5. To unc Course (CO 1 CO 2 CO 3 CO 4	erstand the propagation of electromagnetic waves through different media Dutcomes: After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics, Ability to compute, visualize electrostatic fields along with practical applications Understanding of the basic laws of magnetostatics Ability to compute, visualize magneto static fields along with practical
5. To unc Course CO 1 CO 2 CO 3 CO 4	erstand the propagation of electromagnetic waves through different media Dutcomes : After successful completion of the course, the student will be abl Ability to identify appropriate coordinate systems and visualize and understa the practical significance of vector calculus Understanding of the basic laws of electrostatics, Ability to compute, visualize electrostatic fields along with practical applications Understanding of the basic laws of magnetostatics Ability to compute, visualize magneto static fields along with practical applications

	CO-PO Mapping													
CO		РО												
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	3	2	2									2	1
CO3	3	3	1	1									2	1
CO4	3	3	2	2									2	1
CO5	3	3	2	2									2	1
	1: Low, 2-Medium, 3- High													

LINEAR CONTROL SYSTEMS (21EE2007)														
Course Obj	Course Objectives:													
1. To under	stand	the m	erits a	and de	merit	s of op	en an	d close	ed loo	p cont	rol sys	tems		
2. To under	stand	the m	athen	natical	mode	eling o	f Elect	rical a	nd me	chanio	cal cor	ntrol sy	/stems	
3. To under	stand	the st	ep res	ponse	e of se	cond c	order d	contro	l syste	ms				
4. To plot R	oot locus for the given system transfer function													
5. To under	stand the stability analysis from Bode plot, polar plots													
6. To under	erstand the state space analysis													
Course Out	Outcomes: After successful completion of the course, the student will be able to:													
CO 1	Determine the transfer function for the given electrical or mechanical systems and also													
	determine the transfer function of a system using block diagram reduction techniques and													
	Maso	Mason's gain formula												
CO 2	Anal	Analyze the system behaviour in time domain and step response to various dampings.												
CO 3	Determine the stability of given system by applying Routh's stability criteria.													
CO 4	Analyze the stability of given system by means of Bode plot and polar plot													
CO 5	Dete	rmine	the st	ate mo	odel a	nd asse	essmer	nt of c	ontroll	lability	& ob	servat	oility fro	m the
	giver	n trans	fer fun	ction.										
					(CO-PO	Map	oing						
СО						Ρ	0			-			PS	0
	PO	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												1
CO2	2	1												1
CO3														
CO4	2	1	1											1
CO5	2	1	1											1
					1: Lo	w, 2-M	ledium	, 3- Hi	gh					

DC MACHINES AND TRANSFORMERS LAB (21EE2501)

Course Objectives:

1. To familiarize students about OCC and internal, external characteristics of dc shunt generator.

2. To know the performance characteristics and speed control method of dc shunt motor

3. To know how to predetermine the efficiency of dc shunt motor.

4. To find efficiency, losses and regulation of single phase transformer.

5. To know how to find motor and generator efficiency by connecting to dc shunt machines back to back

6. To familiarize students about characteristics of dc series motor

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1 Determine the magnetization and load characteristics of a DC shunt generator

CO 2 Describe the efficiency and performance characteristics of DC motors

CO 3 Predetermination of transformer with different loads

						CO-PO	Map	oing						
со						Р	0						PS	50
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	2				3	2		3	3	3
CO2	2	3	3	1	2				2	2		3	3	3
CO3	3	3	3	1	2				2	2		3	3	3
	1: Low, 2-Medium, 3- High													

EL	ECTRICAL CIRCUIT ANALYSIS AND SIMULATION LAB (21EE2502)
Course Obj	ectives:
The objectiv	ves are to study:
1. To design	electrical systems.
2. To analyz	e a given network by applying various Network Theorems.
3. To measu	ire three phase Active and Reactive power.
4. To under	stand the locus diagrams
Course Out	comes: After successful completion of the course, the student will be able to:
CO 1	Analyze the three phase circuits for identification of utilization in Power system.
CO 2	Examine the transient response of series and parallel circuits with different
	combinations of R, L and C by using AC / DC supply.
CO 3	Identify the various parameters to analyze the transmission and distribution system
	in electrical engineering

in electrical engineering.CO 4Model the different types of filters for understand the pass band and attenuation of
the various signals.

CO-PO & PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3				2		1	2	2	2	2	2	2
CO2	3	3			2	2			2	2	2		2	2
CO3	3	3				2			2	2	2	2	2	2
CO4	3	3	3		2	2		1	2	2			2	2

1 - Low Level; 2 - Moderate Level; 3 - High Level

LINEAR CONTROL SYSTEMS & SIMULATION LAB (21EE2503)

Course Objectives:

The objectives are to study:

1.To provide practical knowledge for Time response of second order system

2. Determine of transfer functions of various systems and control of it by different Methodologies

3. The characteristics of Magnetic Amplifier, servo mechanisms which are helpful in automatic control systems

4. Determine the stability analysis of different system by using PSPICE and MATLAB

5. To study the closed loop performance for the given plant using P, PD, PI, PID Controllers.

6. The design of controllers/compensators to achieve desired specifications.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1 Get the knowledge of feedback control and transfer function of DC servo motor

CO 2 Model the system and able to design the controllers and compensators

CO 3 Get the knowledge about the effect of poles and zeros location for second order systems

	CO-PO Mapping														
СО						Р	0						PS	50	
	PO	D PO													
	1	2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	2			3				2	2		3	3	3	
CO2	2	3	3	3	3				3	2		3	3	3	
CO3	2	2	3	2	3				2	2		3	3	2	
	1: Low, 2-Medium, 3- High														

	Digital Electronics & Logic Design (21EE2008)	
Course	Objectives:	
To study	the basic concepts of number systems and binary codes.	
To minin	nize Boolean expressions using map and Q-M method.	
To desig	n combinational and sequential circuits.	
To famil	iarize Registers &counters using Flip-Flops.	
To unde	rstand the concept of memory organization	
Course	Outcomes: After successful completion of the course, the student will	be able to:
CO 1	Use number systems, binary codes and Boolean algebra to implement	digital
	circuits. (BL-3)	C
CO 2	Apply minimization techniques on Boolean expressions. (BL-3)	
CO 3	Design combinational circuits using logic gates. (BL-3)	
CO 4	Analyze synchronous sequential circuits. (BL-4)	
CO 5	Classify the memories & programmable logic devices. (BL-2)	
	CO-PO Mapping	
	PO	PSO

					C	CO-PC) Map	ping						
	PO												PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1										1	
CO2	3	3	3	1									1	
CO3	3	3	3	1									1	1
CO4	3	1	2	1									2	1
CO5	2	2											1	1
	1: Low, 2-Medium, 3- High													

POWER DISTRIBUTION & DISTRIBUTED GENERATION (21EE2009)

Course Objectives:

- 1. To illustrate the Necessity of distributed generation
- 2. To Understand different renewable energy sources
- 3. To Understand the control aspects & Power quality issues of DG's
- 4. To understand the structure of Electrical distribution system and various factors
- 5. To understand the technical issues of substations such as location, ratings & Bus bar arrangements

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Compare the advantages & disadvantages of various distributed generation.
CO 2	Describe various Distributed Generation systems, Micro-grid and storage devices
CO 3	Illustrate the Economic and control aspects of DGs
CO 4	Analyze the different load characteristics, distribution factors & Modelling of
	distribution system.
CO 5	Design of Distribution Feeders, Voltage Drop and power loss in D.C Distributors.

	CO-PO Mapping														
СО						Р	0						PS	50	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	2	2 2 2 2 2 3 2												
CO2	2	2 3 2 2 2											3	2	
CO3	3	3	2	2	2								3	2	
CO4	2	2	2	2	2								3	2	
CO5	2	2 2 2 2 2 3 3 2													
	1: Low, 2-Medium, 3- High														

POWER ELECTRONICS (21EE2010)
Course Objectives:
 To understand the various applications of Power electronic devices for conversion, control and conditioning of the electrical power and to get an overview of different types of power semiconductor devices and their dynamic characteristics. To understand the operation, characteristics and performance parameters of
controlled rectifiers
3. To study the operation, switching techniques and basics topologies of DC-DC switching regulators
4. To learn the different modulation techniques of pulse width modulated inverters and
to understand harmonic reduction methods.
Course Outcomes: After successful completion of the course, the student will be able to:
CO 1 Describe the operation of power semiconductor devices
CO 2 Illustrate the construction and operation of silicon controlled rectifier
CO 3 Analyze the various uncontrolled rectifiers and design suitable filter circuits
CO 4 Demonstrate the operation of the DC-DC converters and inverters
CO 5 Summarise the operation of AC controllers.

	CO-PO Mapping														
СО						P	0						PS	50	
	PO	O PO													
	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO1	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO2	3	2	3										3	2	
CO3	3	2	3										3	2	
CO4	3	2	3										3	2	
CO5	3	3 2 3 3 2													
	1: Low, 2-Medium, 3- High														

AC MACHINES Lab (21EE2504)

Course Objectives:

1. To find the performance of induction motor by calculating the efficiency.

2. To find direct and quadrature axis reactances of synchronous motor.

3. To find voltage regulation by using various methods on synchronous machine

4. To determine 'v' and 'inverted v' curves of synchronous motor.

5. To find the efficiency and power factor from circle diagram byconducting no load and blocked rotor test on 3-phase induction motor.

Course Out	tcomes: After successful completion of the course, the student will be able to:
CO 1	Find the performance characteristics of the 3-phase induction motor.
CO 2	Draw the direct and quadrature axis reactance and regulation of
	synchronous machine.
CO 3	To Know the Equivalent Circuit Parameters of a Single Phase Induction Motor
CO 4	To know how to draw circle diagram and determine the electrical parameters by
	using 3-phase squirrel cage induction motor.
CO 5	Know the voltage regulation of synchronous machine by using Synchronous
	Impedance Method.
CO 6	Know the voltage regulation of synchronous machine by using M.M.F.Method.
CO 7	Know the voltage regulation of synchronous machine by using ZPF.Method.
CO 8	Know the voltage regulation of synchronous machine by using ASA.Method.
CO 9	To know how to draw the V and Λ curves of synchronous motor
CO 10	Know the separation of losses of the 1-phase transformer.

Power Electronics and Simulation Lab (21EE2506)

Course Objectives:

The objectives are to study:

- 1. The characteristics of power electronic devices with gate firing circuits
- 2. Various forced commutation techniques
- 3. The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads

4. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators

Course Outcomes:

At the end of the course, students will be able to

1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.

2. To Perform Laboratory Experiments practically.

3. To carry out laboratory experiments on simulation & Kits.

CO-PO Mapping

СО	CO PO													PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12		2		
CO1	3	2			2				2	2			3	2		
CO2	2	3			2				2	2			3	2		
CO3	3	3			2				2	2			3	2		
1: Low, 2-Medium, 3- High																

ADVANCED POWER SYSTEM ANALYSIS (21EE2011)

Course Objectives:

- 1. Discuss the power system network matrices, formation of Y_{Bus} and Z_{Bus}
- 2. Calculation of power flow in a power system network using various techniques
- 3. Discuss the Short Circuit Analysis
- 4. Examine the Power system stability

Course Out	tcomes: After successful completion of the course, the student will be able to:									
CO 1	CO 1 Discuss the Representation of power system matrices with formation of Y _{BUS} .									
CO 2	Describe the Representation of power system matrices with formation of Z_{BUS} .									
CO 3	Apply the concepts of algorithm for the given power system network.									
CO 4	Analyse the symmetrical faults and unsymmetrical faults of a power system network.									
CO 5	Develop the steady State, Dynamic and Transient Stabilities for a power system.									

	CO-PO Mapping													
СО	CO PO												PSO	
	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	3	3	3								3	3
CO2	3	3	3	3	3								3	3
CO3	3	3	3	3	3								3	2
CO4	3	3	3	3	3								3	2
CO5	3	3	3	3	3								3	2
					1: Lo	w, 2-N	ledium	i, 3- Hi	gh					

	ELECTRICAL MEASUREMENTS AND INSTRUMENTATION (21EE2012)
Course Ob	jectives:
1. The	e basic principles of different types of electrical instruments for the Measurement of
voltage, cu	rrent, power factor, power and energy.
2. The	e measurement of R, L, and C parameters using bridge circuits.
3.The	e principles of magnetic measurements.
4.The	e use of Current Transformers, Potential Transformers, and Potentiometers.
Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Describe the concepts and principles of Measuring Instruments to measure voltage and
	current.
CO 2	Analyze the working principles of single and three phase wattmeters & energy meter to
	measure power and energy in circuits.
CO 3	Demonstrate the concepts and principles of AC and DC bridges to evaluate resistance,
	inductance and Capacitance for AC and DC Circuits.
CO 4	Demonstrate the operating principles of instrument transformers and potentiometer to
	measure unknown voltage, Current & Resistance in circuits.
CO 5	Identify the physical variables to describe operating principle of the transducers.

	CO-PO Mapping														
СО	CO PO												PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2										3	2	
CO2	3	3	2										3	2	
CO3	3	3	2										3	2	
CO4	3	3	2										3	2	
CO5	3	3	2										3	2	
					1: Lo	w, 2-N	ledium	i, 3- Hi	gh						

SWITCH GEAR & PROTECTION (21EE2013)

Course Objectives:

- 1. To Learn in detail about Switch gear Protective equipments
- 2. To Learn about the technical aspects involved in the operation of Circuit Breakers
- 3. To Learn about Basic Requirements of Protective Relays
- 4. To Learn different types Relays & Applications

Course Outcomes: After successful completion of the course, the student will be able to:CO 1Demonstrate the operation of different types of Circuit BreakersCO 2Describe the operation & application of various types of protective relays.CO 3Compare the different types of comparators.CO 4Analyze the various protection schemes of various power system components like
alternators, transformers and bus-bars.CO 5Illustrate the various methods of over voltage protection in power systems

						CO-PO	Мар	oing						
CO PO												PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											3	2
CO2	3	2											3	2
CO3	3	2											3	2
CO4	3	2											3	2
CO5	3	2											3	2
	1: Low, 2-Medium, 3- High													

ELECTRICAL MEASUREMENT & INSTRUMENTATION LAB (21EE2507)

Course Objectives:

- 1. Measurement of coefficient of coupling between two coupled coils.
- 2. Accurate determination of inductance and capacitance using D.C and A.C Bridges
- 3. Calibration of various electrical measuring instruments.

Course Out	Course Outcomes: After successful completion of the course, the student will be able to:									
CO 1	Accurately determine the values of inductance and capacitance using a a.c bridges									
CO 2	Compute the coefficient of coupling between two coupled coils									
CO 3	Calibrate various electrical measuring instruments									
CO 4	Accurately determine the values of very low resistances									

					(CO-PO	Map	oing						
СО	РО												PS	50
	PO	PO P										PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	2	1					2	2				1
CO2	2	2	2	1				1	2	2				2
CO3	2	2	1	1				1	2	2				1
CO4	2	2	2	1	1			1	2	2				2
1: Low, 2-Medium, 3- High														

POWER SYSTEM LAB (21EE2508)

Course Objectives:

- 1. To study the different methods of power system analysis.
- 2. To learn about the power system control.
- 3. To learn about the concepts of Power system stability.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1 Examine the power system analysis (**BL=4**)

- CO 2 Identify characteristics of various Relays(BL=3)
- CO 3 Understand various tests on Motors and Transformers (BL=2)

	CO-PO Mapping													
CO		PO												50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1				2	2		1	2	3
CO2	2	2	1	1	1				2	2		1	2	3
CO3	2	2	1	1	1				2	2		1	1	3
1: Low, 2-Medium, 3- High														

SOLID STATE ELECTRICAL DRIVES (21EE2014)

Course Objectives:

1. To understand steady state operation and transient dynamics of a motor load system.

2. To study and analyze the operation of the converter fed dc drive, both qualitatively and quantitatively.

3. To study and analyze the operation of the chopper fed dc drive, both qualitatively and quantitatively.

4. To study and understand the operation and performance of AC Induction motor drives.

5. To study and understand the operation and performance of AC Synchronous motor drives.

Course Outcomes : After successful completion of the course, the student will be able to:
--

CO 1	Describe the basic requirements of motor selection for different load profiles.	

	CO 2	Analyze the operation of the converter fed dc drive
	CO 3	Demonstrate the operation of the chopper fed dc drive
	CO 4	Illustrate the operation and performance of AC Induction motor drives
1		

CO 5 Analyze the induction motor drive using inverter

CO-PO Mapping														
CO		PO PSO												
	PO	PO P												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	2								3	2
CO2	2	2	2	2	2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2	2	2								3	2
1: Low, 2-Medium, 3- High														

POWER SYSTEM OPERATION & CONTROL (21EE2015)

Course Objectives:

1. To understand the importance of optimal power flow and power system.

2. To Describe the hydrothermal scheduling, and its constraints.

3. To listen about single area and two area load frequency control, modeling of turbines

4. To understand the Deregulation, Restructuring models.

Course Ou	tcomes: After successful completion of the course, the student will be able to:								
CO 1	Enumerate the Heat rate curves, Economic operations of power systems								
CO 2	Describe the Hydrothermal power stations Scheduling								
CO 3	Discuss the single area load frequency control, modelling of turbines, speed governing systems.								
CO 4	Illustrate two area load frequency control, tie line and economic dispatch control for load frequency control.								
CO 5	5 Discuss the deregulation and conditions of deregulation in a power systems.								

CO-PO Mapping														
CO		PO PSO												
	PO	PO P										PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2		2								3	2
CO2	2	2	2		2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2		2								3	2
1: Low, 2-Medium, 3- High														

POWER SYSTEM SIMULATION LAB (21EE2510)

Course Objectives:

- 1. To study the different methods of power system analysis.
- 2. To learn about the power system control.
- 3. To learn about the concepts Power system stability.

Course Outcomes: After successful completion of the course, the student will be able to:

- **CO1** Examine the power system analysis- (BL-4)
- **CO 2** Construct the controllers of a power system. (BL-3)
- CO 3 Analyze the various power system stabilities- (BL-4)

CO-PO Mapping														
CO		PO PSO												
	PO	PO P												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	2				2	2		1	2	3
CO2	2	2	1	1	2				2	2		1	2	3
CO3	2	2	1	1	2				2	2		1	1	3
1: Low, 2-Medium, 3- High														

INDUSTRIAL ELECTRICAL SYSTEMS (21EE4001)

Course Objectives:

 To make students understand the fundamental theory governing the photovoltaic devise and make them carry out preliminary system design.
 To learn the fundamental knowledge about various fuel cell technologies.

Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Understand the electrical wiring systems for residential, commercial and industrial consumers through symbols, drawings and SLD (BL-2)
CO 2	Justify the need of industrial electrical system components and industrial automation (BL- 3)
CO 3	Analyze the size, rating and cost of electrical installations for residential and commercial applications (BL-4)
CO 4	Analyze the appropriate electrical system with protective equipments for industrial applications (BL-4)
CO 5	Understand the role of industrial automation (BL-2)

	CO-PO Mapping													
CO		PO PSO												
	PO										PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										2	1
CO2	3	2											3	2
CO3	3	2	2										2	2
CO4	3	2	2	2									3	3
CO5	2	2			2								2	1
1: Low, 2-Medium, 3- High														

	POWER SYSTEM PLANNING (21EE4006)									
Course C	Objectives:									
1.	To make students understand the fundamental theory governing the power system									
	planning and forecasting.									
2.	To make the students to understand the economics related to expansion of power									
	system.									
3.	To learn the fundamental knowledge about transmission and distribution planning									
	for future expansion.									
4.	To make the students to understand the reliability concept in power system to better									
_	operation of power system.									
5.	To make the students to make the planning with respect to electricity market based									
0	demand. $(1 + 1)$									
Course C	Dutcomes: After successful completion of the course, the student will be able to:									
CO 1	Discuss primary components of power system planning, planning methodology for									
	optimum power system expansion and show knowledge of forecasting of future									
	load requirements of both demand and energy by deterministic and statistical									
	techniques using forecasting tools. (BL-2)									
CO 2	Discuss methods to mobilize resources to meet the investment requirement for the									
	power sector and understand economic appraisal to allocate the resources									
	efficiently and appreciate the investment decisions to power generation and									
	planning for system energy in the country (BL-2)									
CO 3	Analyze the operating states of transmission system, their associated contingencies									
	and the stability of the system and discuss principles of distribution planning,									
	supply rules, network development and the system studies. (BL-4)									
CO 4	Discuss reliability criteria for generation, transmission, distribution and reliability									
	evaluation and analysis, grid reliability, voltage disturbances and their remedies									
	(BL-2)									
CO 5	Discuss planning and implementation of electric –utility activities, market									
	principles and the norms framed by CERC for online trading and exchange in the									
	interstate power market. (BL-2)									

	CO-PO Mapping														
CO		РО												PSO	
	PO	PO											PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	1	2		2	2	2		2	2	1	
CO2	2	3	2	1	2	2		2				2	3	2	
CO3	3	2	2	2	2	2		1	2	2		2	2	2	
CO4	3	2	2	2	1	2		2				2	3	3	
CO5	3	2	2	2	2	2		2	2	2		2	2	1	
1: Low, 2-Medium, 3- High															

	Reactive Power Compensation and Management (21EE4011)								
Course Objectives:									
 To identify the necessity of reactive power compensation 									
• To	To describe load compensation								
• To	• To select various types of reactive power compensation in transmission systems								
• To	contrast reactive power coordination system								
• To	• To characterize distribution side and utility side reactive power management.								
Course O	utcomes: After successful completion of the course, the student will be able to:								
CO 1	Distinguish the importance of load compensation in symmetrical as well as un								
	symmetrical loads (BL-3)								
CO 2	Observe various compensation methods in transmission lines (BL-2)								
CO 3	CO3 Construct model for reactive power coordination (BL-3)								
CO 4	Understand the demand side reactive power management (BL-2)								
CO 5	Understand the user side reactive power management (BL-2)								

	CO-PO Mapping													
СО		PO PSO												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2		2					2		2	1
CO2	3	3	2	2		2					2		3	2
CO3	3	3	2	2		2					2		2	2
CO4	3	3	2	2		2					2		3	3
CO5	3	3	2	2		2					2		2	1
1: Low, 2-Medium, 3- High														

POWER QUALITY (21EE4016)

Course Objectives:

- 1. Power quality issues and standards.
- 2. The sources of power quality disturbances and power transients that occur in power systems.
- 3. The sources of harmonics, harmonic indices, Devices for controlling harmonic distortion.

4. The principle of operation of DVR and UPQC.

Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Address power quality issues to ensure meeting of standards (BL-2)
CO 2	Apply the concepts of compensation for sags and swells using voltage regulating devices (BL-3)
CO 3	Assess harmonic distortion and its mitigation. (BL-4)
CO 4	Understand the power measurement data according to standards (BL-2)
CO 5	Analyze the power quality improvement with custom power devices (BL-4)

	CO-PO Mapping													
СО		PO												
	PO	PO P												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	3	2	2									3	2
CO3	3	3	2	2	2								2	2
CO4	3	3	2	2	2								3	3
CO5	3	3	2	2	2								2	1
	1: Low, 2-Medium, 3- High													

	SMART GRID TECHNOLOGIES (21EE4021)
Course O	bjectives:
• To	understand various aspects of smart grid
• To	study various smart transmission and distribution technologies
• To :	appreciate distribution generation and smart consumption
• To .	know the regulations and market models for smart grid
Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Understand technologies for smart grid (BL-2)
CO 2	Understand the smart transmission system and its technologies (BL-2)
CO 3	Understand the smart distribution system and its technologies (BL-2)
CO 4	Realize the distribution generation and smart consumption (BL-3)
CO 5	Know the regulations and market models for smart grid (BL-2)

					С	O-PO) Map	ping						
CO		РО												
	PO	PO												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2		2	2						2	1
CO2	3	3	3	2		2	2						3	2
CO3	3	3	3	2		2	2						2	2
CO4	3	3	3	2		2	2	2					3	3
CO5	3	3	3	2		2	2	2					2	1
	1: Low, 2-Medium, 3- High													

System Modelling and Identification (21EE4002)	
--	--

- Course Objectives: 1.To Understand the Modelling of Dynamic Systems 2 To Understand the Stability margins, correlation of frequency domain and time domain 3. To Understand the Concepts of linear sampled data systems 4. To Understand the computation Z-transform

- 5. To Understand the compensation in Z domain and W plane

Course Out	comes: After successful completion of the course, the student will be able to:									
CO 1	CO 1 Learn the design of Modelling of Dynamic Systems									
CO 2	Analyze the Stability margins, correlation of frequency domain and time domain									
CO 3	Analyse linear sampled data systems									
CO 4	Learn the computation Z-transform									
CO 5	Understand the compensation in Z domain and W plane									

						CO-PC) Map	ping						
СО		РО												
	РО	PO												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	1
CO2	3		1										1	1
CO3	1	2												1
CO4	1	2	1										1	1
CO5	1		2											2
	1: Low, 2-Medium, 3- High													

ADVANCED CONTROL SYSTEMS (21EE4007)

Course Objectives:

- 1. To Understand state feedback control and state observer
- 2. To Understand the phase plane analysis
- 3. To Understand the Analysis of describing functions with non-linearities
- 4. To Understand the design of optimal controller
- 5. To Understand the design of optimal estimator including Kalman Filter, Lyapunov's Stability

Course Out	comes: After successful completion of the course, the student will be able to:									
CO 1	1 Learn the design of state feedback controller and state observer									
CO 2	Analyze the linear and nonlinear systems using phase plane method.									
CO 3	Analyse nonlinear systems using describing function method									
CO 4	Learn the optimal control problem									
CO 5	Understand the Solution of Kalman Filter by duality principle, Direct method of Lypanov for Linear and Nonlinear continuous time autonomous systems.									

	CO-PO Mapping													
СО		РО												
	РО	PO	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
	1: Low, 2-Medium, 3- High													

Digital Signal Processing (21EE4012)

Course Objectives: 1. To Understand Discrete-time signals and systems & properties

- 2. To Understand z- Transform, inverse z- Transform & properties
- 3. To Understand the design of low pass, high pass, band pass & stop band IIR digital filters
- 4. To Understand Computer aided design of Equiripple Linear phase FIR filters
- 5. To Understand arithmetic round off errors, Low sensitivity digital filters

Course Out	annes: After successful completion of the course, the student will be able to:									
Course Out	Course Outcomes. After successful completion of the course, the student will be able to.									
CO 1	CO 1 Understand Discrete-time signals and systems & properties									
CO 2	Analyze the z- Transform, inverse z- Transform & properties									
CO 3	Understand the design of low pass, high pass, band pass & stop band IIR digital filters									
CO 4	Learn Computer aided design of Equiripple Linear phase FIR filters									
CO 5	Understand arithmetic round off errors, Low sensitivity digital filters.									

						CO-PC) Map	ping						
CO		PO												
	PO	PO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1										1	2
CO2	1		3										1	2
CO3	2	2												1
CO4	2	1	3										1	2
CO5	2		1											2
	1: Low, 2-Medium, 3- High													

MULTIVARIABLE CONTROL SYSTEMS (21EE4017)

Course Objectives:

- To Understand Multivariable Connections, Multivariable Representation
 To Understand Performance Specification in Multivariable Systems
 To Understand Stability of Multivariable Feedback
 To Understand Controllability and Observability and Realization in Multivariable Systems
- 5. To Understand Multivariable Control System Design

Course Out	comes: After successful completion of the course, the student will be able to:									
CO 1	CO 1 Learn the Multivariable Connections, Multivariable Representation									
CO 2	Analyze the Performance Specification in Multivariable Systems.									
CO 3	Analyse Stability of Multivariable Feedback									
CO 4	Learn the Controllability and Observability and Realization in Multivariable Systems									
CO 5	Understand the Multivariable Control System Design									

	CO-PO Mapping													
СО		РО												
	PO	O PO												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
	1: Low, 2-Medium, 3- High													

REAL TIME CONTROL SYSTEMS (21EE4022)

- Course Objectives: 1. To Understand Real - time systems
 - 2. To Understand Hierarchical representation of complex DES
 - 3. To Understand Real time Operating Systems, Interrupts
 - 4. To Understand Real time Programming.
 - 5. To Understand Real time process and applications

5.										
Course Outcomes: After successful completion of the course, the student will be able to:										
CO 1	Analyze the Characteristic features of RT applications and develop features from Non - RT and Off									
	- line system									
CO 2	Understand the Hierarchical representation and analyzing Logical properties									
CO 3	Derive the Example of checking safety and timing properties and also understand the									
	Requirements and features of real - time Computing Environments									
CO 4	Understand and analyze the Real – time Programming for real-time systems.									
CO 5	Analyze the Real - time process, Applications and understand the Distributed Real - time systems									

	CO-PO Mapping													
СО	РО												PSO	
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									1	2
CO2	3	3	2	2									1	1
CO3	3	3	2	2										1
CO4	3	3	2	2									1	2
CO5	3	3	2	2										2
					1: Lo	w, 2-N	ledium	, 3- Hig	gh					

MACHINE MODELING AND ANALYSIS (21EE4003)

Course Objectives:

Able to understand the

- 1. Able to analyze the Basic Concepts of Modeling Electrical machines.
- 2. To understand Mathematical model of the DC Motor.
- 3. Able to analyze the dynamic modeling and phase transformation.
- 4. To understand the Modeling of Induction Machine.
- 5. To understand the Dynamic Analysis of Synchronous Machine.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Understand the basic conce	epts of AC/ DC machine	modeling. (BL-2)
------	----------------------------	------------------------	------------------

CO 2	Understand the Mathematical model of the DC Machine.	(BL-2))
------	--	--------	---

CO 3	Analyze the Reference	e frame theory model of	Electrical machine.	(BL-3)
-------------	-----------------------	-------------------------	---------------------	--------

machine.(BL-3)	CO 4	Analyze the steady state and dynamic state operation of three-phase induction
	601	machine.(BL-3)

CO 5 Analyze the modeling and simulation of three phase synchronous machine .(BL-3)

	CO-PO Mapping													
	PO PSO													
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2		2							1	3
CO2	2	2	2										2	3
CO3	2	2	2			2							2	3
CO4	3	2											2	3
CO5	2	3				2							1	3
	1: Low, 2-Medium, 3- High													

Electrical Machine Design (21EE4008)

Course Objectives:

- 1. To discuss the properties of electrical, magnetic and insulating materials used in the design of electrical machines.
- 2. To design armature and field systems for D.C. machines.
- 3. To design core, yoke, windings and cooling systems of transformers.
- 4. To design stator and rotor of induction machines.
- 5. To design stator and rotor of synchronous machines and study their thermal behavior.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Understand the basic principles of machine design. (BL-2)
CO 2	Analyze the performance design DC motor. (BL-4)
CO 3	Analyze the performance design winding and core of transformer. (BL-4)
CO 4	Analyze the performance design winding and core of rotating electrical machine. (BL-4)
CO 5	Analyze the short circuit ratio and its effects on performance of synchronous machines.
	(BL-4)

	CO-PO Mapping													
СО		PO PSO											50	
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2	3	3	3	3								3	
CO3	2	3	3	3	3								3	
CO4	2	3	3	3	3								3	
CO5	2	3	3	3	3								3	
					1: Lo	w, 2-N	ledium	i, 3- Hi	gh					

	Programmable Control Devices and Applications (21EE4013)									
Course O	Course Objectives:									
1	Understand the basic functions and types of PLCs.									
2	Get exposure of Easy Veep software, its applications.									
3	Classification of PLCs and applications									
4	Programming using PLCs .									
5	Troubleshooting aspects using PLCs.									
Course O	Course Outcomes : After successful completion of the course, the student will be able to:									
CO 1	Understand different types of PLCs (BL-2)									
CO 2	Understand the usage of Easy Veep software (BL-1)									
CO 3	Understand the hardware details of Allen Bradley PLC . (BL-2)									
CO 4	Programming of PLCs . (BL-2)									
CO 5	Know about few applications of PLCs in different fields of Science and Technology .									
	(BL-2)									

	CO-PO Mapping													
СО		PO P											PS	0
	PO	PO P										PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												2	1
	1: Low, 2-Medium, 3- High													

	HYBRID ELECTRICAL VEHICLES (21EE4018)								
Course Ob	Course Objectives:								
1.	To understand Importance of Hybrid Electric Vehicles								
2.	To Know the various drive-train topologies								
3.	To Learn the operation and configurations of DC & AC Drives								
4.	To Know the importance of various Energy storage systems and Energy								
	management strategies								
5.	To provide knowledge about supervisory control of EVs								
Course Outcomes : After successful completion of the course, the student will be able to:									
CO 1	Understand the models to describe hybrid vehicles and their performance (BL-2)								
CO 2	Classify various hybrid drive-train topologies(BL-1)								
CO 3	Understand the various configurations of DC & AC Motor drives. (BL-2)								
CO 4	Understand the different possible ways of energy storage and different strategies								
	related to Energy management strategies. (BL-2)								
CO 5	Understand the mode of operation and control Architecture. (BL-2)								

	CO-PO Mapping													
СО						Р	0						PS	50
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												1	
	1: Low, 2-Medium, 3- High													

	AUTOMOTIVE ELECTRICAL ENGINEERING (21EE4023)
Course Ob	jectives:
1.	To understand the various types of Batteries and their ratings
2.	To understand the starting condition and its behavior
3.	To understand the various charging systems in Automobiles
4.	To learn different Lighting systems in Automobiles
5.	To learn electronic engine management system in Automobiles
6.	To understand the various electrical and non electrical sensors
Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Compute the efficiency of Batteries through various test's
CO 2	Understand the working of different starter drive units and their maintenance and
	the concept of vehicle charging system with its auxiliaries
CO 3	Understand the dazzling of head light and its preventive methods
CO 4	Understand the electronic dashboard instruments & onboard diagnostic system
CO 5	Understand the various sensors used in Automobiles

	CO-PO Mapping													
СО						Р	0						PS	50
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		1				2						2	2
CO2	2	1	1											
CO3	2		1										1	
CO4	2	1	2										2	2
CO5	2	1	1										1	2
	1: Low, 2-Medium, 3- High													

	RENEWABLE ENERGY CONVERSION SYSTEMS (21EE4004)
Course O	bjectives:
1.	To create awareness about various Electric Energy Conversion Systems.
2.	Learn the fundamental concepts about solar energy conversion systems and
	devices
3.	To understand the solar thermal conversion systems for high temperature
	applications.
4.	To learn Thermal and Bio-energy conversion systems
5.	To Understand the various technologies that are used in WECS
6.	To Understand the Fuel cell technology
Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Understand various Electric Energy Conversion Systems (BTL-2)
CO 2	Analyze the solar thermal conversion system (Also for high temperature
	applications) (BTL-4)
CO 3	Analyze the Photovoltaic & Bio-Energy Conversion Systems (BTL-4)
CO 4	Illustrate the existing Wind Energy Conversion System (BTL-2)
CO 5	Extend the knowledge about working principle of various Fuel cell technology
	(B1L-2)

CO-PO Mapping														
CO		PO PSO												50
	PO	O PO												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	1										1	
CO2	2	2											1	2
CO3	2	1											1	1
CO4	2	1	1											2
CO5	1	1	1										1	2
1: Low, 2-Medium, 3- High														

SOLAR AND FUEL CELL ENERGY SYSTEMS (21EE4009)

Course Objectives:

1. To make students understand the fundamental theory governing the photovoltaic devise and make them carry out preliminary system design.2. To learn the fundamental knowledge about various fuel cell technologies.

Course O	utcomes : After successful completion of the course, the student will be able to:
CO 1	Understand the need of radiation of sun and discuss the various performance
	characteristics of solar radiation.(BL-2)
CO 2	Discuss the photovoltaic effect, PV Cell efficiency and its limits along with the concepts of fabrication technology for solar cell (BL-2)
CO 3	Predict the performance of solar photovoltaic device and analyze its performance. (BL-2)
CO 4	Carry out the application of photovoltaic system as power system. (BL-3)
CO 5	Analyze the performance of fuel cells under different operating conditions and also defend appropriate fuel cell technology for a given application. (BL-4)

	CO-PO Mapping													
CO		PO PSO												
	PO	PO P												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1			2	2						2	1
CO2	3	3	3			2	2				2		3	2
CO3	2	2	1			2	2				2		2	2
CO4	2	2				2	2	2			2		3	3
CO5	5 2 3 2 2 2 2 2 1													
1: Low, 2-Medium, 3- High														

WIND & BIOMASS ENERGY SYSTEM (21EE4014)														
Course O	bjectiv	ves:												
1. T	'o acqu	ire the	e knov	vledge	e on w	ind po	wer g	enerat	tion					
2. T	'o Understand the concept of wind turbine design													
3. T	3. To Discuss the Current trends in worldwide applications of wind power													
4. T	o Unde	erstand	d the v	arious	s meth	ods B	io- Cł	nemica	al Con	versio	n syst	ems		
5. T	o Discu	uss the	e vario	ous ap	plicati	ons of	fbiom	ass						
Course O	utcom	es: Af	fter su	ccess	ful co	omple	tion o	f the o	course	e, the s	studer	nt will	be able	e to:
CO 1	Under	rstand	the p	resent	wind	energy	y scen	ario (I	3L-2)					
CO 2	Expla	in the	variou	is wind	l energ	y tech	nologi	es. (Bl	L-3)					
CO 3	Identi	Identify various applications of wind energy .(BL-2)												
CO 4	Explain the various biomass conversion technologies and testing of performance of													
	biogas.	(BL-2	2)											
CO 5	Under	stand t	the Bio	-Energ	gy Syst	tems w	vith Ef	ficient	Applic	cations	. (BL-	2)		
					C	0-P0) Map	ping						
CO						P	0						PS	O
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
601	1	2	3	4	5	6	1	8	9	10	11	12	1	2
COI	3	3	2	2									2	1
CO2	3	1	1	2									3	2
CO3	3	3 3 2 1 2 2 2												
CO4	2	2	3	2									3	3
CO5	1	1 2 1 2 2 1 2 1												
1: Low, 2-Medium, 3- High														

	UTILIZATION OF ELECTRICAL ENERGY (21EE4019)										
Course Ob	ojectives:										
1.	To Summarize various electric drives and traction motors with applications										
2.	To Understand the concepts of Mechanics of Train movement and associated										
	calculations										
3.	To Explain the laws of illumination and their application for various lighting										
	schemes										
4.	To understand the different methods of electric heating and electric welding										
5.	To identify how to utilize the solar radiation into electrical energy for different										
	applications and to understand the basic principles of wind energy conversion										
Course Ou	tcomes: After successful completion of the course, the student will be able to:										
CO 1	Utilize the suitable electric drives for different applications(BL=3)										
CO 2	Analyze the Speed-Time Curves of Different Services(BL=4)										
CO 3	Identify the energy saving based on Illumination system (BL=3)										
CO 4	Understand the utilization of electrical energy for heating and welding										
	purposes(BL=2)										
CO 5	Illustrate the effective usage of solar and wind energy for electrical										
	applications(BL=2)										

	CO-PO Mapping													
CO		PO PSO												
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2												1	3
CO2	3	2												3
CO3	3	2		2									2	2
CO4	2			1	1								1	2
CO5	2	2	1				2						1	3
1: Low, 2-Medium, 3- High														

ENERGY AUDIT & DEMAND SIDE MANAGEMENT (21EE4024)

Course Objectives:

- 1. To learn about energy consumption and situation in India
- 2. To learn about Energy Management.
- **3.** To learn about Energy Measuring Instruments.
- 4. To understand the Demand Side Management (DSM).
- **5.** To understand the cost effectiveness for DSM.

Course Outcomes: After successful completion of the course, the student will be able to:

- CO1 Understand the importance of energy audit and the basic ideas of conduction an energy audit (BTL-2)
- **CO 2** Analyze various techniques of energy management and conservation (BTL-4)
- **CO 3** Understand energy efficient methods and power factor improvement techniques (BTL-2)
- **CO 4** Analyze demand side management concepts through case study (BTL-4)
- **CO 5** Understand various Cost effectiveness test for demand side management programs (BTL-2)

	CO-PO Mapping													
CO							PO						PS PS	50
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2												
C01	1		1	2		2			2	1			1	1
CO2	1	2	1	1		1	1		2		1		2	1
CO3		1		1		1							2	1
CO4	1	2				1			1				1	1
CO5	1	1	2			1			1				1	1
	1: Low, 2-Medium, 3- High													

ADVANCED POWER ELECTRONICS (21EE4005)

Course Objectives:

- 1. To explain the concepts of power electronic switches
- 2. To demonstrate the applications and analysis of switches in DC-DC converter and various single phase converters
- 3. To analyze the operation of single phase, three phase and multipulse converters
- 4. To analyze the power quality improvement techniques
- 5. To analyze the allocations of FACTS devices

Course Ou	Course Outcomes : After successful completion of the course, the student will be able to:								
CO 1	Explain basic Concept of Switches and their controlling process (B-2)								
CO 3	Demonstrate the device physics, Application and Analysis of Switches in DC-DC								
	converters and Single Phase Converter (B-2)								
CO D	Analyze the operation Single Phase Converter, Three Phase Converter, Multipulse								
CO 3	Converter and Effect of Source Inductance and PWM Rectifiers (B-4)								
CO 4	Analyze the Power Quality Improvement Techniques in electrical systems (B-4)								
CO 5	Analyze the applications of FACTS Devices in electrical system (B-4)								

	CO-PO Mapping															
	PO													PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
C01	2	2											2	3		
CO2	3	2											2	3		
CO3	3	2											2	3		
CO4	3	2	2										2	2		
CO5	3	2	2										2	3		
					1: Lov	<i>N</i> , 2-M	ediun	1, 3- Hi	igh							

ADVANCED ELECTRICAL DRIVES (21EE4010)

Course Objectives:
1. To understand steady state operation and transient dynamics of a motor load system.
2. To acquire knowledge of fuzzy logic and neural network concepts in various drives

Course Ou	Course Outcomes : After successful completion of the course, the student will be able to:									
CO 1	Analyze the Power electronic converters for electrical drives.(BL-4)									
CO 2	Analyze the field oriented control of machines.(BL-4)									
CO 3	Understand the vector control of electrical drives.(BL-2)									
CO 4	Understand the sensor less control of AC drives.(BL-2)									
CO 5	Analyze the direct torque control of Induction Machines.(BL-4)									

	CO-PO Mapping														
CO		PO												PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	3		2								1	2	
CO2	2	2	3		2								1	2	
CO3	2	2	2		2								1	2	
CO4	2		3		2									2	
CO5	2	2	2		2									2	
					l: Lov	v, 2-M	ediun	1, 3- H	ligh						

	HVDC and FACTS (21EE4015)
Course Obj	ectives:
1.	To introduce the extra high voltage AC and DC transmission
2.	To introduce the HVDC transmission system with types, control and protection.
3.	To discuss about the design factors of lines and cables.
4.	To provide knowledge on FACTS controllers.
5.	To introduce the reactive power control techniques.
6.	To study the characteristics, modelling and operating schemes of different types
	of shunt and series switched reactive power generating devices.
Course Out	comes: After successful completion of the course, the student will be able to:
CO 1	Find the applications of different types of HVDC links.(BL-2)
CO 2	Apply converters for HVDC transmission for control of converters.(BL-3)
CO 3	Understand the concept of filters to mitigate harmonics, concept of reactive power
	requirements.(BL-2)
CO 4	Understand the working principles of FACTS devices.(BL-2)
CO 5	Analyze the performance of Series, Shunt and combined FACTS controllers.(BL-4)

	CO-PO Mapping													
СО		PO PS(
	PO	PO P												PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										3	2
CO2	3		3										2	2
CO3	2	2	2										2	2
CO4	2	3	2										3	2
CO5	2	2	3										3	2
					1: Lo	w, 2-N	ledium	n, 3- Hi	gh					

ADVANCED POWER CONVERTERS (21EE4020)

Course Objectives:

- 1. To analyze the dc-dc voltage regulators
- 2. To describe the operation of resonant converters
- 3. To describe the operation of multi level converters and multi pulse converters with switching strategies for high power
- 4. To understand Principle of Operation DC power supplies
- 5. To analyze the AC power supplies

Course O	Course Outcomes : After successful completion of the course, the student will be able to:									
CO 1	Evaluate different dc-dc voltage regulators(BL-3)									
CO 2	Analyze resonant converters(BL-3)									
CO 3	Evaluate various multi-level inverter configurations (BL-3)									
CO 4	Select appropriate phase shifting converter for a multi-pulse converter (BL-3)									
CO 5	Analyze the various DC power supplies (BL-3)									

CO-PO Mapping														
		РО												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	2	2											2	3
CO2	3	2	2										3	3
CO3	1	1	1										2	3
CO4	2	2											2	2
CO5	1	3											2	3
					1: Lov	w, 2-M	edium	1, 3- Hi	igh					

ADVANCED POWER SEMICONDUCTOR DEVICES AND PROTECTION (21EE4025)

Course Objectives: OBJECTIVES:

1. To improve power semiconductor device structures for adjustable speed motor controlapplications.

2. To understand the static and dynamic characteristics of current controlled powersemiconductor devices

3. To understand the static and dynamic characteristics of voltage controlled powersemiconductor devices

4. To enable the students for the selection of devices for different power electronicsApplications5. To understand the control and firing circuit for different devices.

Course Ou	Course Outcomes : After successful completion of the course, the student will be able to:										
CO 1	Analyze power switching devices (BL-4)										
CO 2	Design of current controlled devices and their parameters (BL-3)										
CO 3	Analyze the voltage controlled devices and their parameters (BL-2)										
CO 4	Understand new power semiconductor devices(BL-2)										
CO 5	Design of protecting circuit(BL-3)										

CO-PO Mapping														
	РО												PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											2	2
CO2	3	2	2										2	2
CO3	3	2											2	2
CO4	3	2											2	2
CO5	3	2	2										2	2
	1: Low, 2-Medium, 3- High													